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Integer programming

• Integer program (IP) in standard form: 

• One of the most useful and widely applicable optimization 
techniques

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛
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Branch-and-cut

• Powerful tree-search algorithm used by fastest 
solvers to solve IPs in practice

• Our contribution: improved theory for using 
machine learning to tune (1) general model of 
tree search and (2) any-and-all aspects of 
branch-and-cut

3



Branch-and-bound

• Powerful tree-search algorithm used to solve IPs in 
practice

• Uses the linear programming (LP) relaxation to do an 
informed search through the set of feasible integer 
solutions

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

IP

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℝ𝑛

LP relaxation
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Branch-and-bound: branching

• Choose variable i to branch on.
• Generate one subproblem with 𝒙 𝑖 ≤ 𝒙LP

∗ 𝑖 another with 𝒙 𝑖 ≥ ⌈𝒙LP
∗ 𝑖 ⌉

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

⋮ ⋮

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ𝑛
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Branch-and-bound: pruning

• Prune subtrees if
– LP relaxation at a node is integral, infeasible, or
– (Bounding) LP optimal worse than best feasible integer solution found 

so far

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝒊] ≤ 2
𝒙 ∈ ℤ𝑛

⋮
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Branch-and-bound: node selection

• At every stage, need to choose a leaf to explore further
• Variety of heuristics (e.g. best-bound-first chooses the node with the 

smallest LP objective)

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

⋮

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ𝑛
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Branch-and-cut

• Branch-and-bound, but at each node may add 
cutting planes

• Method of getting tighter LP relaxation 
bounds, and thus pruning subtrees sooner
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Cutting planes

• Constraint 𝜶𝒙 ≤ 𝛽 is a valid cutting plane if it does 
not cut off any integer feasible points

Valid cutting planes An invalid cutting plane
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Cutting planes

• If 𝜶𝒙 ≤ 𝛽 is valid and separates the LP optimum, can 
speed up B&C by pruning nodes sooner

𝒙LP
∗

𝒙LP
∗ after adding cut

Integer optimum 𝒙IP
∗
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Tuning branch-and-cut

• Solvers like CPLEX, Gurobi have numerous parameters 
that control various aspects of the search (CPLEX has 
170 page manual describing 172 parameters)
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Abstracting away: tree search
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Q1

• Select node Q that maximizes node 
selection rule nscore(T, Q)

Q2 Q4 Q7
…

• Select action A that 
maximizes action score 
ascore(T, Q, A)

• Either prune tree at Q, or 
add children

• Continue until all nodes are 
prunedQ3

Qκ

Actions chosen using mixture of scoring rules:
ascore = 𝜇 ⋅ ascore1 + 1 − 𝜇 ⋅ ascore2

Nodes chosen using mixture of scoring rules:
nscore = 𝜆 ⋅ nscore1 + 1 − 𝜆 ⋅ nscore2



Cut scoring rule example

Efficacy:

distance between cut 
and 𝒙LP

∗

score1 𝜶𝑇𝒙 ≤ 𝛽 =
𝜶𝒙LP

∗ − 𝛽

𝜶 2
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Cut scoring rule example

Parallelism:

angle between cut 
and objective

score2 𝜶𝑇𝒙 ≤ 𝛽 =
|𝒄𝜶|

𝜶 2 𝒄 2
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Better parallelism Worse parallelism



Cut scoring rule example

Directed cutoff:

distance between cut 
and 𝒙LP

∗ , in direction 
of current best integer 
solution

score3 𝜶𝑇𝒙 ≤ 𝛽 =
𝜶𝒙LP

∗ − 𝛽

|𝜶 ഥ𝒙 − 𝒙LP
∗ |

⋅ ഥ𝒙 − 𝒙LP
∗

2
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Better directed cutoff Worse directed cutoff



Pathwise scoring rules

• All the previous scoring rules are pathwise: 
they only depend on the LP information 
accumulated along the path from the root to 
the node in question

• Open source solver SCIP uses hard-coded 
mixture of scores to choose cuts
3
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1
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Generalization guarantees for 
tree search and branch-and-cut

Distribution-dependent parameter 
selection of 𝜇, 𝜆
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Parameterized tree search
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Q1

• Select node Q that maximizes node 
selection rule nscore(T, Q)

Q2 Q4 Q7
…

• Select action A that 
maximizes action score 
ascore(T, Q, A)

• Either prune tree at Q, or 
add children

• Continue until all nodes are 
prunedQ3

Qκ

Actions chosen using mixture of pathwise scoring rules:

ascore = 𝝁 ⋅ ascore1 + 1 − 𝝁 ⋅ ascore2
Nodes chosen using mixture of pathwise scoring rules:

nscore = 𝝀 ⋅ nscore1 + 1 − 𝝀 ⋅ nscore2



Learning to tune tree search

Best parameters for 
airline-scheduling IPs…
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…might not be useful for 
combinatorial-auction IPs 
solved by a sourcing firm



Learning to tune branch-and-cut
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Max 𝒄𝟏 ∙ 𝒙
s.t. 𝐴1𝒙 ≤ 𝒃𝟏

𝒙 ∈ ℤ𝑛

Max 𝒄𝑁 ∙ 𝒙
s.t. 𝐴𝑵𝒙 ≤ 𝒃𝑵

𝒙 ∈ ℤ𝑛
⋯

IP 1 IP N

∼ 𝐷

If a certain set of parameters yields small average branch-and-cut tree 
size over IP samples…

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛
∼ 𝐷

…is it likely to yield a small 
branch-and-cut tree on a fresh IP?



Sample complexity

• 𝑄 – domain of input root nodes to tree search

• 𝐹 = 𝑓𝜇,𝜆: 𝑄 → 𝐑 𝜇, 𝜆} class of functions (e.g. tree size)

• Sample complexity 𝑁𝐹(𝜀, 𝛿) is the minimum 𝑁0 ∈ 𝐍 such that for 
any 𝑁 ≥ 𝑁0:

Pr
𝑄1,…,𝑄𝑁∼𝐷

sup
𝑓∈𝐹

1

𝑁
෍

𝑖=1

𝑁

𝑓(𝑄𝑖) − 𝐄𝑄∼𝐷 𝑓(𝑄) ≤ 𝜀 ≥ 1 − 𝛿

for any distribution 𝐷 on 𝑄.
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Sample complexity of tuning tree search
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Theorem [BPSV CP’22]: For all 𝜇, 𝜆, the number of samples so 
that the difference between average training performance 
and expected performance when 𝜇, 𝜆 is used to select actions 
and nodes throughout the tree is (whp) at most 𝜀 is

෨𝑂
𝐻2

𝜀2
Δ2 log 𝑘 + Δ log 𝑏

Δ = tree depth
𝑘 = tree branching factor
𝑏 = # actions available at each node
𝐻 = cap on size of tree

First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection



Generalization guarantee for tree search
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Theorem [BPSV CP’22]: For all 𝜇, 𝜆, difference between average 
training performance and expected performance when 𝜇, 𝜆 is 
used to select actions and nodes throughout the tree is (whp)

෨𝑂 𝐻
Δ2 log 𝑘 + Δ log 𝑏

𝑁

Δ = tree depth
𝑘 = tree branching factor
𝑏 = # actions available at each node
𝐻 = cap on size of tree

First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection

Holds for any (unknown) 
distribution over tree-search 

problem instances



Tree search guarantees

• Main challenge: performance functions (e.g. size of 
tree) are highly discontinuous
– Miniscule change in parameters can lead to exponential 

difference in tree size

• We prove that parameterized tree search is structured

• Allows us to bound the intrinsic complexity (pseudo-
dimension from learning theory) of the class of 
performance functions parameterized by 𝜇, 𝜆 , which 
implies our sample complexity bounds
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Tree search structure
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Theorem [BPSV CP’22]:

Fix path-wise node selection scores nscore1, nscore2 and 
path-wise action selection scores ascore1, ascore2, and the 
input node 𝑄.

There are ≤ 𝑘Δ 9+Δ 𝑏Δ rectangles partitioning 0,1 2 such 
that for any rectangle 𝑅, the node-selection score 𝜆 ⋅
nscore1 + 1 − 𝜆 ⋅ nscore2 and action selection score 
𝜇 ⋅ ascore1 + 1 − 𝜇 ⋅ ascore2 result in the same tree for all 
𝜇, 𝜆 ∈ 𝑅.

Δ = tree depth
𝑘 = tree branching factor



Back to branch-and-cut

• Our result implies polynomial bounds for:

– Branching: single-variable, multi-variable, branching on 
general disjunctions with bounded coefficients,…

– Cutting planes: cover cuts, clique cuts, any cuts derived from 
simplex tableau (Chvátal cuts, Gomory mixed integer cuts)

– Allows node selection to be tuned simultaneously

• Prior work

– [Balcan et al. ICML’18] studied single-variable branching with 
pathwise scoring rules (our result recovers theirs)

– [Balcan, Prasad, Vitercik, Sandholm NeurIPS’21] studied Chvátal
cuts, but obtained a much weaker bound when these are applied 
throughout the tree due to not using pathwise assumption
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Knapsack cover cuts – an experiment

• Set of items 𝑁, item 𝑖 ∈ 𝑁 has value 𝑝𝑖 ≥ 0 and weight 𝑤𝑖 ≥ 0

• Set of knapsacks 𝐾, knapsack 𝑘 ∈ 𝐾 has capacity 𝑊𝑘 ≥ 0

• Goal: find feasible packing of maximum weight

maximize Σ𝑖∈𝑁Σ𝑘∈𝐾𝑝𝑖𝑥𝑘,𝑖

subject to Σ𝑖∈𝑁𝑤𝑖𝑥𝑘,𝑖 ≤ 𝑊𝑘 ∀𝑘 ∈ 𝐾

Σ𝑘∈𝐾𝑥𝑘,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁

𝑥𝑘,𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾
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Knapsack cover cuts – an experiment

• Cover cut for knapsack 𝑘: if 𝑤1 +𝑤2 +𝑤3 ≥ 𝑊𝑘 (items 1, 2, 3 
are jointly too heavy for knapsack 𝑘), can enforce the 
constraint 𝑥𝑘,1 + 𝑥𝑘,2 + 𝑥𝑘,3 ≤ 2

• We tune convex combinations of cut scoring rules to control 
the addition of cover cuts* throughout the branch-and-cut 
tree

*actually a special kind of cover cut: extended minimal cover cuts
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Knapsack cover cuts – an experiment
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Knapsack cover cuts – an experiment
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