
Improved Sample Complexity Bounds for
Branch-and-Cut

Nina Balcan Carnegie Mellon University

Siddharth Prasad Carnegie Mellon University

Tuomas Sandholm Carnegie Mellon University, Optimized Markets, Inc.,

Strategic Machine, Inc., Strategy Robot, Inc.

Ellen Vitercik Stanford University

CP 2022

1

Integer programming

• Integer program (IP) in standard form:

• One of the most useful and widely applicable optimization
techniques

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

2

Scheduling Routing Combinatorial auctions Clustering

Branch-and-cut

• Powerful tree-search algorithm used by fastest
solvers to solve IPs in practice

• Our contribution: improved theory for using
machine learning to tune (1) general model of
tree search and (2) any-and-all aspects of
branch-and-cut

3

Branch-and-bound

• Powerful tree-search algorithm used to solve IPs in
practice

• Uses the linear programming (LP) relaxation to do an
informed search through the set of feasible integer
solutions

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

IP

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℝ𝑛

LP relaxation

4

Branch-and-bound: branching

• Choose variable i to branch on.
• Generate one subproblem with 𝒙 𝑖 ≤ 𝒙LP

∗ 𝑖 another with 𝒙 𝑖 ≥ ⌈𝒙LP
∗ 𝑖 ⌉

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

⋮ ⋮

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ𝑛

5

Branch-and-bound: pruning

• Prune subtrees if
– LP relaxation at a node is integral, infeasible, or
– (Bounding) LP optimal worse than best feasible integer solution found

so far

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝒊] ≤ 2
𝒙 ∈ ℤ𝑛

⋮

6

Branch-and-bound: node selection

• At every stage, need to choose a leaf to explore further
• Variety of heuristics (e.g. best-bound-first chooses the node with the

smallest LP objective)

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛

⋮

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ𝑛

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ𝑛

7

Branch-and-cut

• Branch-and-bound, but at each node may add
cutting planes

• Method of getting tighter LP relaxation
bounds, and thus pruning subtrees sooner

8

Cutting planes

• Constraint 𝜶𝒙 ≤ 𝛽 is a valid cutting plane if it does
not cut off any integer feasible points

Valid cutting planes An invalid cutting plane

9

Cutting planes

• If 𝜶𝒙 ≤ 𝛽 is valid and separates the LP optimum, can
speed up B&C by pruning nodes sooner

𝒙LP
∗

𝒙LP
∗ after adding cut

Integer optimum 𝒙IP
∗

10

Tuning branch-and-cut

• Solvers like CPLEX, Gurobi have numerous parameters
that control various aspects of the search (CPLEX has
170 page manual describing 172 parameters)

11

Abstracting away: tree search

12

Q1

• Select node Q that maximizes node
selection rule nscore(T, Q)

Q2 Q4 Q7
…

• Select action A that
maximizes action score
ascore(T, Q, A)

• Either prune tree at Q, or
add children

• Continue until all nodes are
prunedQ3

Qκ

Actions chosen using mixture of scoring rules:
ascore = 𝜇 ⋅ ascore1 + 1 − 𝜇 ⋅ ascore2

Nodes chosen using mixture of scoring rules:
nscore = 𝜆 ⋅ nscore1 + 1 − 𝜆 ⋅ nscore2

Cut scoring rule example

Efficacy:

distance between cut
and 𝒙LP

∗

score1 𝜶𝑇𝒙 ≤ 𝛽 =
𝜶𝒙LP

∗ − 𝛽

𝜶 2

13

Cut scoring rule example

Parallelism:

angle between cut
and objective

score2 𝜶𝑇𝒙 ≤ 𝛽 =
|𝒄𝜶|

𝜶 2 𝒄 2

14

Better parallelism Worse parallelism

Cut scoring rule example

Directed cutoff:

distance between cut
and 𝒙LP

∗ , in direction
of current best integer
solution

score3 𝜶𝑇𝒙 ≤ 𝛽 =
𝜶𝒙LP

∗ − 𝛽

|𝜶 ഥ𝒙 − 𝒙LP
∗ |

⋅ ഥ𝒙 − 𝒙LP
∗

2

15

Better directed cutoff Worse directed cutoff

Pathwise scoring rules

• All the previous scoring rules are pathwise:
they only depend on the LP information
accumulated along the path from the root to
the node in question

• Open source solver SCIP uses hard-coded
mixture of scores to choose cuts
3

5
score1 +

1

10
score2 +

1

2
score3 +

1

10
score4

16

Generalization guarantees for
tree search and branch-and-cut

Distribution-dependent parameter
selection of 𝜇, 𝜆

17

Parameterized tree search

18

Q1

• Select node Q that maximizes node
selection rule nscore(T, Q)

Q2 Q4 Q7
…

• Select action A that
maximizes action score
ascore(T, Q, A)

• Either prune tree at Q, or
add children

• Continue until all nodes are
prunedQ3

Qκ

Actions chosen using mixture of pathwise scoring rules:

ascore = 𝝁 ⋅ ascore1 + 1 − 𝝁 ⋅ ascore2
Nodes chosen using mixture of pathwise scoring rules:

nscore = 𝝀 ⋅ nscore1 + 1 − 𝝀 ⋅ nscore2

Learning to tune tree search

Best parameters for
airline-scheduling IPs…

19

…might not be useful for
combinatorial-auction IPs
solved by a sourcing firm

Learning to tune branch-and-cut

20

Max 𝒄𝟏 ∙ 𝒙
s.t. 𝐴1𝒙 ≤ 𝒃𝟏

𝒙 ∈ ℤ𝑛

Max 𝒄𝑁 ∙ 𝒙
s.t. 𝐴𝑵𝒙 ≤ 𝒃𝑵

𝒙 ∈ ℤ𝑛
⋯

IP 1 IP N

∼ 𝐷

If a certain set of parameters yields small average branch-and-cut tree
size over IP samples…

Max 𝒄 ∙ 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ𝑛
∼ 𝐷

…is it likely to yield a small
branch-and-cut tree on a fresh IP?

Sample complexity

• 𝑄 – domain of input root nodes to tree search

• 𝐹 = 𝑓𝜇,𝜆: 𝑄 → 𝐑 𝜇, 𝜆} class of functions (e.g. tree size)

• Sample complexity 𝑁𝐹(𝜀, 𝛿) is the minimum 𝑁0 ∈ 𝐍 such that for
any 𝑁 ≥ 𝑁0:

Pr
𝑄1,…,𝑄𝑁∼𝐷

sup
𝑓∈𝐹

1

𝑁
෍

𝑖=1

𝑁

𝑓(𝑄𝑖) − 𝐄𝑄∼𝐷 𝑓(𝑄) ≤ 𝜀 ≥ 1 − 𝛿

for any distribution 𝐷 on 𝑄.

21

Sample complexity of tuning tree search

22

Theorem [BPSV CP’22]: For all 𝜇, 𝜆, the number of samples so
that the difference between average training performance
and expected performance when 𝜇, 𝜆 is used to select actions
and nodes throughout the tree is (whp) at most 𝜀 is

෨𝑂
𝐻2

𝜀2
Δ2 log 𝑘 + Δ log 𝑏

Δ = tree depth
𝑘 = tree branching factor
𝑏 = # actions available at each node
𝐻 = cap on size of tree

First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection

Generalization guarantee for tree search

23

Theorem [BPSV CP’22]: For all 𝜇, 𝜆, difference between average
training performance and expected performance when 𝜇, 𝜆 is
used to select actions and nodes throughout the tree is (whp)

෨𝑂 𝐻
Δ2 log 𝑘 + Δ log 𝑏

𝑁

Δ = tree depth
𝑘 = tree branching factor
𝑏 = # actions available at each node
𝐻 = cap on size of tree

First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection

Holds for any (unknown)
distribution over tree-search

problem instances

Tree search guarantees

• Main challenge: performance functions (e.g. size of
tree) are highly discontinuous
– Miniscule change in parameters can lead to exponential

difference in tree size

• We prove that parameterized tree search is structured

• Allows us to bound the intrinsic complexity (pseudo-
dimension from learning theory) of the class of
performance functions parameterized by 𝜇, 𝜆 , which
implies our sample complexity bounds

24

Tree search structure

25

Theorem [BPSV CP’22]:

Fix path-wise node selection scores nscore1, nscore2 and
path-wise action selection scores ascore1, ascore2, and the
input node 𝑄.

There are ≤ 𝑘Δ 9+Δ 𝑏Δ rectangles partitioning 0,1 2 such
that for any rectangle 𝑅, the node-selection score 𝜆 ⋅
nscore1 + 1 − 𝜆 ⋅ nscore2 and action selection score
𝜇 ⋅ ascore1 + 1 − 𝜇 ⋅ ascore2 result in the same tree for all
𝜇, 𝜆 ∈ 𝑅.

Δ = tree depth
𝑘 = tree branching factor

Back to branch-and-cut

• Our result implies polynomial bounds for:

– Branching: single-variable, multi-variable, branching on
general disjunctions with bounded coefficients,…

– Cutting planes: cover cuts, clique cuts, any cuts derived from
simplex tableau (Chvátal cuts, Gomory mixed integer cuts)

– Allows node selection to be tuned simultaneously

• Prior work

– [Balcan et al. ICML’18] studied single-variable branching with
pathwise scoring rules (our result recovers theirs)

– [Balcan, Prasad, Vitercik, Sandholm NeurIPS’21] studied Chvátal
cuts, but obtained a much weaker bound when these are applied
throughout the tree due to not using pathwise assumption

26

Knapsack cover cuts – an experiment

• Set of items 𝑁, item 𝑖 ∈ 𝑁 has value 𝑝𝑖 ≥ 0 and weight 𝑤𝑖 ≥ 0

• Set of knapsacks 𝐾, knapsack 𝑘 ∈ 𝐾 has capacity 𝑊𝑘 ≥ 0

• Goal: find feasible packing of maximum weight

maximize Σ𝑖∈𝑁Σ𝑘∈𝐾𝑝𝑖𝑥𝑘,𝑖

subject to Σ𝑖∈𝑁𝑤𝑖𝑥𝑘,𝑖 ≤ 𝑊𝑘 ∀𝑘 ∈ 𝐾

Σ𝑘∈𝐾𝑥𝑘,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁

𝑥𝑘,𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾

27

Knapsack cover cuts – an experiment

• Cover cut for knapsack 𝑘: if 𝑤1 +𝑤2 +𝑤3 ≥ 𝑊𝑘 (items 1, 2, 3
are jointly too heavy for knapsack 𝑘), can enforce the
constraint 𝑥𝑘,1 + 𝑥𝑘,2 + 𝑥𝑘,3 ≤ 2

• We tune convex combinations of cut scoring rules to control
the addition of cover cuts* throughout the branch-and-cut
tree

*actually a special kind of cover cut: extended minimal cover cuts

28

Knapsack cover cuts – an experiment

29

Knapsack cover cuts – an experiment

30

