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Motivation

Intertemporal choice: how people make choices over time.

Discounted utility: I prefer $10 today over $10 a year from
today. What about $10 today versus $100 a year from today?

Discounted utility models of intertemporal choice widely used in
economics and by researchers in other fields:

Model savings and borrowing decisions

Evaluating climate change policies

Self control in humans and animals

Predictions made by these economic models match neurobiological
data obtained via MRI scans.
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Setup - preferences

T time periods.

x ∈ RT are plans

%⊆ RT × RT is a preference

A preference model P is a collection of preferences
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Setup - learning

Agent makes choices from pairs (x , y) ∈ RT × RT according
to %∈ P
After observing finitely many choices output hypothesis that
w.h.p. is very close to %.

PAC Learning:

Questions (x , y) drawn from an unknown distribution on
RT × RT , receive the agent’s choice for every question drawn.
Sample complexity of PAC learning is O

(
1
ε

(
VC (P) + log 1

δ

))
.

Active Learning:

Stream model: pairs drawn from unknown distribution, but
analyst can choose whether or not to request agent response.
Membership queries: analyst directly chooses questions to ask
the analyst.
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Previous work on learning economic choice parameters

Kalai (2001). Learnability of choice functions: observe sets of
alternatives along with most preferred alternative from each
set.

Beigman and Vohra (2006), Zadimoghaddam and Roth
(2012), Balcan et al. (2014). Learning utility functions from
revealed preference: observe chosen bundles of goods when
faced with prices and budget constraint.

Basu and Echenique (2018). Learning choice under
uncertainty. Preference relations given by x % y iff x yields
higher expectation than y , for various notions of subjective
expectation.
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Discounted utility

Discounted utility model of preferences PD: preferences % such
that there is a decreasing map D : {1, . . . ,T} → (0, 1) where

x % y ⇐⇒
T∑
t=1

D(t)xt ≥
T∑
t=1

D(t)yt .

Exponential discounting D(t) = δt , δ ∈ (0, 1).

Hyperbolic discounting D(t) = 1
1+tα , α > 0.

Quasi-hyperbolic discounting D(t) =

{
1 t = 1

β · δt−1 t > 1

Zachary Chase, Siddharth Prasad Learning Time Dependent Choice



Discounted utility
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Need structure on discounting for fast learning!

Most general preference model with weights: PW where x % y iff
w .x ≥ w .y for some w ∈ RT .

T − 1 ≤ VC (PW) ≤ T + 1.

With no structure to discounting, cannot improve this:

Proposition

T − 1 ≤ VC (PD) ≤ T + 1.

Want structural conditions on the preference model that yield
better learning results and capture the commonly used discounting
models (exponential, hyperbolic, quasi-hyperbolic).
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A structural result
Q1, . . . ,QT polynomials of degree ≤ d .

Preference model PPW : x % y iff∑T
t=1Qt(δ)xt ≥

∑T
t=1Qt(δ)yt .

Preference model PBPW : x % y iff(
1
β − 1

)∑T
t=1Qt(0)xt +

∑T
t=1Qt(δ)xt ≥(

1
β − 1

)∑T
t=1Qt(0)yt +

∑T
t=1Qt(δ)yt .

Exponential improvement in learning:

Theorem

For all ε > 0, VC (PPW),VC (PBPW) ≤ (1 + ε) log d for large
enough d .

If d ≤ T − 1, and the Qt span space of polynomials of degree
≤ T − 1, VC (PPW),VC (PBPW) ≥ log(T − 1).

Exponential, Hyperbolic, and Quasi-hyperbolic discounting models
learnable with logarithmic growth in sample size.
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A more powerful analyst

Stream-based setting:

Disagreement methods: request choice for a pair only if there
is something to be learned from it.

In general appears difficult to analyze label complexities due
to dependence on underlying distribution.

Redeeming result for exponential discounting
(x % y ⇐⇒

∑
t δ

txt ≥
∑

t δ
tyt):

Theorem

There exists a distribution on RT × RT for which the exponential
discounting model is learnable with Õ

(
logT log 1

ε

)
labels

(exponential improvement over PAC)

Membership queries: can learn exponential discounting factor to
ε-accuracy with O(log 1

ε ) queries (by performing a binary search).
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