
Mechanism Design and Integer Programming
in the Data Age

Siddharth Prasad

CMU-CS-25-125

August 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maria-Florina Balcan, Co-Chair

Tuomas Sandholm, Co-Chair
Gérard Cornuéjols

Craig Boutilier (Google)
Peter Cramton (University of Maryland)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Siddharth Prasad

This research was sponsored by the National Science Foundation under award numbers IIS-1901403, IIS-2312342,
IIS-1718457, IIS-1617590, CCF-1910321, CCF-1733556, CCF-1535967, and SES-1919453, the Toyota Techno-
logical Institute at Chicago under award number T00311601 (Defense Advanced Research Projects Agency under
award number HR00112020003), the U.S. Army Contracting Command under award numbers W911NF-22-1-0266,
W911NF-17-1-0082, W911NF-20-1-0081, a Vannevar Bush Faculty Fellowship ONR N00014-23-1-2876, and NIH
award A240108S001. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.

Keywords: Mechanism Design, Market Design, Auctions, Integer Programming, Cutting
Planes, Branch-and-Cut, Machine Learning, Algorithm Configuration

Dedicated to Asu Thatha, Indira Pati, Sujatha Athai,
Naani Thatha, and Kamala Pati.

iv

Abstract
This thesis focuses on improving computational and economic aspects of mech-

anism design, and on improving critical components of integer programming algo-
rithms. Various marketplaces in the world today, from spectrum allocation to strate-
gic sourcing to display advertisements to financial exchanges and more, benefit from
carefully engineered rules to govern the efficient exchange of items. Mechanism de-
sign offers a principled way to design the rules to such market-based systems in
order to implement desired market outcomes subject to strategic self-interested par-
ticipants. It is the prominent approach to many market design problems and has
been deployed in the real world with high impact. On the computational front, in-
teger programming is the go-to method for solving discrete optimization problems
that arise in market design applications and beyond.

Within mechanism design, our focus is on the design of better mechanisms that
take advantage of any and all information available to the mechanism designer. Our
new mechanisms provably generalize and improve the state of the art, and signifi-
cantly expand the scope of what forms of information can be expressed and used to
boost performance. We apply our advances in mechanism design to combinatorial
markets where bidders have complex, combinatorial preferences over a rich space
of outcomes. Here, our new combinatorial auctions directly improve over existing
designs that have been used to conduct high-stakes auctions around the world.

Within integer programming, our focus is on the theory and practice of cut-
ting planes, which are one of the most critical components of integer programming
solvers. We invent new cutting planes that deliver strong theoretical and practical
performance, and develop a comprehensive generalization theory for data-driven pa-
rameter configuration within the branch-and-cut algorithm.

In both areas, we fundamentally advance the classical state of knowledge and
introduce new data-driven perspectives, all in support of the thesis that high per-
formance—e.g., revenue, social welfare, run-time, memory, etc.—in marketplaces
can only be fully realized by a synergy of approaches in mechanism design, integer
programming, and machine learning.

vi

Acknowledgments
First and foremost, I would like to thank my PhD advisors Nina Balcan and Tuo-

mas Sandholm. Working with them was an absolute thrill and a deeply enlightening
experience. I learned from them the art of carving out the most important research
problems to work on in a manner that delivers both elegance and practical impact.
The exalted opportunity to complete a PhD under their guidance has immeasurably
shaped the way I think about the important things in work and in life.

Thank you to Gérard Cornuéjols, Craig Boutilier, and Peter Cramton for being a
fantastic thesis committee. They are giants in their respective fields and it is a great
honor to have had them engage with my research and to have learned from them.
Special thanks to Craig Boutilier and Martin Mladenov for their enriching mentor-
ship and collaboration during my internship at Google. Thanks to Ellen Vitercik for
a very productive and enjoyable collaboration on integer programming.

Caltech was an amazing place to kindle a love for research as an undergraduate
and I would not be on my current path without my mentors from that time. Special
thanks to Federico Echenique and Adam Wierman for being excellent research ad-
visors and for introducing me to the fascinating area of computational economics.
Thanks are also due to Alexander Kechris and Adam Sheffer, who patiently guided
me through my first real experiences with open-ended mathematical research.

Thank you to my friends and colleagues, including my officemates and labmates,
at CMU and elsewhere for the camaraderie. Special thanks to Matt Kempster for
being a close friend for the last ten years.

Finally, and most importantly, thank you to my family. The PhD is just a small
fruit of the immense sacrifices made by my parents and grandparents. Thank you
to Amma, Appa, and Suhas for being a nonstop source of support, guidance, en-
couragement, and entertainment. Thank you to Morgan for your constant love and
unconditional support. PhD life would have been a slog without you. And lastly,
thanks to Rudy for being the greatest cat.

viii

Contents

1 Introduction 1

I Cutting Plane Theory and Configuration for Integer Programming 7

2 Primer on Integer Programming, Cutting Planes, and Branch-and-Cut Tree Search 9

3 New Sequence-Independent Lifting Techniques for Cover Inequalities and When
They Induce Facets 11
3.1 New Sequence-Independent Lifting Functions: Structure and Properties 14
3.2 Experimental Evaluation . 19
3.3 Conclusions and Future Research . 22

4 Learning to Tune Branch-and-Cut 25
4.1 Learning Theory Background . 26
4.2 Related Work . 27
4.3 Sample Complexity of Learning Chvátal-Gomory Cuts 29
4.4 Sample Complexity Bounds for Branch-and-Cut and General Tree Search 36
4.5 Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed-

Integer Cuts . 52

II Mechanism Design with Side Information with Applications to Com-
binatorial Markets 79

5 Multidimensional Mechanism Design with Side Information 81
5.1 Problem Formulation, Example Applications, and Weakest-Type VCG 88
5.2 Measuring Predictor Quality via Weakest Types 92
5.3 Main Mechanism and its Guarantees . 96
5.4 Other Forms of Side Information . 102
5.5 Beyond VCG: Weakest-Type Affine-Maximizer Mechanisms 108
5.6 Conclusions and Future Research . 109

ix

6 Weakest Bidder Types and New Core-Selecting Combinatorial Auctions 111
6.1 Problem Formulation and Background on Core-Selecting CAs 114
6.2 Impossibility of IC Core-Selecting CAs . 116
6.3 Our New Core-Selecting CAs and their Properties 117
6.4 Computing Weakest-Type Prices . 119
6.5 Experiments . 124
6.6 Conclusions and Future Research . 130

7 Revenue-Optimal Efficient Mechanism Design with General Type Spaces 133
7.1 Problem Formulation, Mechanism Design Background, and Examples of Dis-

connected Type Spaces . 135
7.2 Example Illustrating Sub-optimality of Vanilla Weakest Type 137
7.3 Characterization of the Optimal Efficient Mechanism 137
7.4 Conclusions and Future Research . 143

8 Learning to Generate Artificial Competition 145
8.1 Problem Formulation, f -VCG Auctions, and Our Bidder Model 147
8.2 Revenue-Optimal Efficient Auctions . 148
8.3 Learning to Generate Competition . 153
8.4 Conclusions and Future Research . 157

III Other Models of Learning for Mechanism Design 159

9 Learning Revenue-Maximizing Two-Part Tariffs 161
9.1 Problem Formulation . 162
9.2 Algorithms for Optimal TPT Structures . 164
9.3 Market Segmentation . 169

10 Within-Instance Learning for Auction Design 173
10.1 Learning Within an Instance for Designing High-Revenue Combinatorial Auctions173
10.2 Maximizing Revenue Under Market Shrinkage and Market Uncertainty 188

11 Conclusions and Future Research Directions 201

A Omitted Details About Lifting in Chapter 3 205

B Omitted Details About Plots in Section 4.5 211

Bibliography 213

x

List of Figures

3.1 The PC lifting function g0 is the piecewise constant step function depicted by
the solid black lines. The GNS lifting function g1/ρ1 is obtained by replacing the
solid lines in the intervals Sh with the depicted dashed lines. If all coefficients of
variables being lifted lie in the blue and red regions with at least three coefficients
in the leftmost blue region, PC lifting is facet-defining and dominates GNS lifting
(Theorem 3.1.8). 15

3.2 Illustrative experiments comparing different lifting methods. The first five plots
are performance plots for the five different problem distributions, with various
parameter settings. The heatmap illustrates the effect of varying the per-node
cut limit and overall cut limit on run-time (avg. over first 10 weakly-correlated
instances). 23

4.1 Chvátal distribution with 35 items and 2 knapsacks. 47
4.2 Chvátal distribution with 35 items and 3 knapsacks. 48
4.3 Reverse Chvátal distribution with 100 items and 10 knapsacks. 49
4.4 Reverse Chvátal distribution with 100 items and 15 knapsacks. 50
4.5 These figures illustrate the need for distribution-dependent policies for choos-

ing cuts. We plot the average number of nodes B&C expands as a function of
a parameter µ that controls a policy to add GMI cuts, detailed in Appendix B.
In each figure, we draw a training set of facility location IPs from two different
distributions. In Figure 4.5a, we define the distribution by starting with a uni-
formly random facility location instance and perturbing its costs. In Figure 4.5b,
the costs are more structured: the facilities are located along a line and the clients
have uniformly random locations. In Figure 4.5a, a smaller value of µ leads to
small search trees, but in Figure 4.5b, a larger value of µ is preferable. 53

4.6 Our branch-and-cut analysis involves successive refinements to our partition of
the parameter space. 54

4.7 Decomposition of the parameter space: the blue region contains the set of (α1, α2)
such that the constraint intersects the feasible region at x = 1 and x = y. The
red lines consist of all (α1, α2) such that the objective value is equal at these
intersection points. The red lines partition the blue region into two components:
one where the new optimum is achieved at the intersection of h and x = y, and
one where the new optimum is achieved at the intersection of h and x = 1. 58

4.8 Indifference surface for two edges of the feasible region of an LP in three variables. 59

xi

5.1 Two different predictions (the ellipse and polygon displayed with dashed bound-
aries) that are equivalent in the sense that their weakest types create the same
amount of welfare w(θ̃i,θ−i) = w(θi,θ−i)−∆i for the system and thus generate
the same weakest-type payments for agent i, despite the fact that one prediction
(the polygon) contains the true type and the other (the ellipse) completely misses
the true type. Welfare level sets are depicted by the solid black lines. 94

5.2 An agent’s expected value (as a fraction of θi[α∗]) as a function of ζi for prob-
lem parameters ∆VCG

i = 10, ∆err
i = 2 (conservative prediction), varying λi ∈

{2−100, 2−10, 2−1}. 100
5.3 Left: Payment as a function of ζi for problem parameters θi[α∗] = 15, ∆VCG

i =
10, ∆err

i = 2 (conservative prediction), varying λi ∈ {2−100, 2−10, 2−1}. Right:
Payment as a function of ∆err

i for problem parameters θi[α∗] = 15, ∆VCG
i = 10

and mechanism parameter ζi = 2, varying λi ∈ {2−100, 2−10, 2−1}. 101

6.1 Price vectors pVCG and pWT (in red) and their nearest respective minimum-revenue
core points (in yellow, connected by a green line) as derived in Example 6.3.5.
MRC(pWT) lies on a different face of the core than MRC(pVCG) and is of higher
revenue. 120

6.2 Incentive effects as type spaces convey more information (by varying the number
of constraints K ∈ {1, 2, 4, 8, 16}, with number of goods varying in {64, 128}
and number of bids varying in {250, 500, 1000}, averaged over 100 instances for
each K and each setting of goods/bids. 127

6.3 Revenue effects as type spaces convey more information (by varying the number
of constraints K ∈ {1, 2, 4, 8, 16}, with number of goods varying in {64, 128}
and number of bids varying in {250, 500, 1000}, averaged over 100 instances for
each K and each setting of goods/bids. 128

6.4 Core burdens shouldered by the lower and upper halves of bidders (measured by
winning bid value). For the three MRC(pWT)-selecting rules, the left bar displays
the core burden split relative to WT, and the right bar displays the core burden
split relative to VCG. For the two vanilla MRC-selecting rules, the bar displays
the core burden split relative to VCG. 129

7.1 Examples of a disconnected type space Θ1 = ΘA
1 ∪ ΘB

1 and the corresponding
graph G encoding the optimal efficient mechanism. The solid edges in G make
up the tree of shortest paths. 142

9.1 Three iterations of the single tariff algorithm from a given hinge point. The points
displayed represent the valuations of three buyers (differentiated by the rendering
style of the points) over four units. If, for example, p′2, p

′′
2 ∈ (p

(1)
2 , p

(2)
2), then the

quantities purchased by each buyer remain the same for the tariffs with slopes p′2
and p′′2 hinged at the given point. 165

10.1 Containment relations between auction classes. New auction classes introduced
in this section are in boldface. 183

xii

10.2 A winner diagram representing a second-price auction with a single item and
four bidders with valuations S = {v1 = 1, v2 = 2, v3 = 4, v4 = 8}. At each
node, the top set S ′ is the set of remaining bidders, and the bottom set is the set
of bidders ω(S ′) that actually determine revenue. Boxed nodes represent heavy
equivalence classes for p = 8/9, which is the subgraph of the winner diagram A
randomizes over. 194

10.3 Illustration of the inductive step in Lemma 10.2.3. Boxed sets correspond to rep-
resentative elements of equivalence classes in G. Solid arrows represent directed
edges in G from parent to child. 195

xiii

xiv

List of Tables

6.1 Geometric mean (GM) and standard deviation (GSD) of run-times (in seconds)
and number of constraint generation (CG) iterations for the BPS and BO formu-
lations, varying the number of goods and bids, averaged across 100 instances for
each good/bid setting. 123

6.2 Run-times and constraint generation iterations for the BPS formulation as β
varies, with number of goods varying in {64, 128} and number of bids vary-
ing in {250, 500}, averaged over 100 instances for each β and each setting of
goods/bids. 126

6.3 Frequency with which WT is in the core but VCG is not, with number of goods
varying in {64, 128} and number of bids varying in {250, 500, 1000}; 100 in-
stances for each K and each setting of goods/bids. 127

xv

xvi

Chapter 1

Introduction

Markets are everywhere. Spectrum allocation, sourcing and procurement, display advertise-
ments, financial exchanges, organ exchanges, ride sharing, supply chain industries, and elec-
tronic commerce are just some of the domains that benefit from carefully engineered rules to
govern the purchase and/or exchange of items. The need for better market design is at the core
of some of humanity’s biggest problems as well: just one example is the importance of better
designs of electricity, water, and carbon emission markets to mitigate the rate and magnitude of
climate change while allocating essential resources to those who most need them.

In nearly every domain, the market designer must reckon with tradeoffs between market
objectives (like social welfare, gains from trade, or revenue), treatment of market participants
in terms of incentives and fairness, judicious use of computational resources, and real world
complexities like legacy market structures and regulations. The ability to effectively learn from
data in today’s world presents significant opportunities to improve the efficiency of market-based
systems in all aspects. But, data must be used in a sound manner that respects the interests and
incentives of those human participants without whom there would be no market to speak of.
The opportunities and challenges of data are further amplified in modern massive-scale online
markets such as those present in recommender ecosystems and display advertisements.

Mechanism design is a subfield of economics, computer science, and operations research
that offers a principled way to design the rules to market-based systems such as those described
above in order to implement desirable outcomes subject to strategic self-interested participants.
It is the prominent approach to a large swathe of market design problems, especially those where
the exchange of goods can be implemented through monetary transfers.

On the computational front, nearly all success stories of mechanism design in the real world
rely and have relied on integer programming. In strategic sourcing, the market clearing problem
is typically solved via integer programming; CombineNet in the 2000s developed custom branch-
and-cut algorithms to take advantage of the rich economic design space [Sandholm et al., 2006,
Sandholm, 2007, 2013]. The OneChronos Alternative Trading System uses integer program-
ming to clear point-in-time auctions that prioritize trade execution quality over speed—a depar-
ture from how most financial exchanges operate. Core-selecting combinatorial auctions used
for spectrum allocation around the world solve large integer programs via iterative methods to
compute equitable prices [Day and Cramton, 2012]. Beyond market design, nearly every indus-
try uses integer programming to model and solve the discrete optimization problems that arise

1

in diverse business applications from NFL game scheduling to post-pandemic return-to-office
planning to delivery truck routing.

This thesis focuses on improving computational and economic aspects of mechanism design,
and on further improving the components of integer programming algorithms that make solvers
like Gurobi, CPLEX, Xpress, HiGHS, SCIP, and others a go-to technology for market design
applications and beyond.

Within mechanism design, our focus is on the design of better pricing structures that take into
account any and all information available to the mechanism designer. The main application is
to the design of combinatorial markets where bidders have complex, combinatorial preferences
over outcomes. We also investigate a few other novel learning models for mechanism design.

Within integer programming, our focus is on the theory and practice of cutting planes, which
are one of the most critical components of integer programming solvers. We invent new cutting
planes with strong theoretical and practical properties, and develop a comprehensive generaliza-
tion theory for data-driven cutting plane configuration (which has since turned into an active area
of research).

In both areas, we fundamentally advance the classical state of knowledge and introduce new
data-driven perspectives, all in support of the thesis that high performance—e.g., revenue, social
welfare, run-time, memory, etc.—in marketplaces can only be fully realized by a synergy of
approaches in mechanism design, integer programming, and machine learning.

Part I. Cutting Plane Theory and Configuration for Integer Programming
The first part of this thesis studies cutting planes, which are some of the most important compo-
nents of modern integer programming solvers. Cutting planes are constraints added to an integer
program—throughout branch-and-cut tree search—that chop off infeasible fractional solutions
while preserving the set of integer feasible solutions. They lead to tighter dual bounds and thus
allow tree search to terminate earlier. The criticality of cutting planes to practical integer pro-
gramming for real-world problems cannot be understated. Without cutting planes, integer pro-
gramming solvers would not be a viable commercial technology [Bixby et al., 1999, Cornuéjols,
2007]. The work covered in this part is joint with Nina Balcan, Tuomas Sandholm, and Ellen
Vitercik.

Chapter 2: Primer on Integer Programming, Cutting Planes, and Branch-and-Cut Tree
Search This chapter is a primer on the important and relevant aspects of integer programming:
it covers integer programming formulations, an overview of cutting planes and polyhedral theory,
and a description of the branch-and-cut tree search algorithm that forms the backbone of all
successful integer programming solvers.

Chapter 3: New sequence-Independent Lifting Techniques for Cover Inequalities and When
They Induce Facets We study a class of cutting planes called lifted cover inequalities, which
are implemented in every integer programming solver. We invent a new technique for generating
lifted cover inequalities, correct an error in a proposed technique from the seminal work on this
topic [Gu et al., 2000], characterize when our technique yields facet-defining cuts (which are the

2

gold standard for cutting planes since they are in a formal sense the strongest kind of cut), and
conduct experiments that validate the practical use of our new class of cuts.

Chapter 4: Learning to Tune Branch-and-Cut Cutting plane selection—the question of
what cuts to add during branch-and-cut tree search—is an inexact science that had generally
relied upon heuristics and rule of thumb. In this chapter, we develop the first formal guarantees
for machine-learning based cut selection by bounding how large the training set should be to
ensure that for any cutting plane configuration, its average performance over the training set is
close to its expected future performance. En route, we conduct a novel structural analysis of the
branch-and-cut algorithm that sheds new geometric and combinatorial insights on (i) general tree
search algorithms and (ii) important families of cutting planes such as Gomory cuts (which were
invented in the 1950s [Gomory, 1958] and integrated into integer programming solvers in the
late 1990s [Balas et al., 1996b, Cornuéjols, 2007]).

Part II. Mechanism Design with Side Information With Applications to Com-
binatorial Markets
The second part of this thesis is focused on improving mechanism design based on any knowl-
edge the mechanism designer might have about the participating agents. We develop a novel
and highly-flexible framework that can integrate nearly anything the mechanism designer knows
about agents, and we show how this ability helps obtain mechanisms with better economic prop-
erties than existing ones. The work covered in this part is joint with Nina Balcan and Tuomas
Sandholm.

Chapter 5: Bicriteria Multidimensional Mechanism Design with Side Information We
develop a versatile methodology for multidimensional mechanism design that incorporates side
information about agents to generate high welfare and high revenue simultaneously. Side infor-
mation sources include advice from domain experts, predictions from machine learning models,
and even the mechanism designer’s gut instinct. We design a tunable mechanism that integrates
side information with an improved Vickrey-Clarke-Groves-like mechanism based on weakest
types, which are agent types that generate the least welfare. We show that our mechanism, when
carefully tuned, generates welfare and revenue competitive with the prior-free total social sur-
plus, and its performance decays gracefully as the side information quality decreases. We con-
sider a number of side information formats including distribution-free predictions, predictions
that express uncertainty, agent types constrained to low-dimensional subspaces of the ambient
type space, and the traditional setting with known priors over agent types. In each setting we
design mechanisms based on weakest types and prove performance guarantees.

Chapter 6: Weakest Bidder Types and New Core-Selecting Combinatorial Auctions Core-
selecting combinatorial auctions are popular auction designs that constrain prices to eliminate
the incentive for any group of bidders—with the seller—to renegotiate for a better deal. They
help overcome the low-revenue issues of classical combinatorial auctions. We introduce a new
class of core-selecting combinatorial auctions that leverage bidder information available to the

3

auction designer through type spaces. We show that our designs can overcome the well-known
impossibility of incentive-compatible core-selecting combinatorial auctions, and prove that they
minimize the sum of bidders’ incentives to deviate from truthful bidding. We develop new con-
straint generation techniques—and build upon existing quadratic programming techniques—to
compute core prices, and conduct experiments to evaluate the incentive, revenue, fairness, and
computational merits of our new auctions.

Chapter 7: Revenue-Optimal Efficient Mechanism Design with General Type Spaces We
derive the revenue-optimal efficient (welfare-maximizing) mechanism in a general multidimen-
sional mechanism design setting when type spaces—that is, the underlying domains from which
agents’ values come from—can capture arbitrarily complex informational constraints about the
agents. Prior work (dating from Green and Laffont [1979], Holmström [1979], Myerson [1981])
has only dealt with connected type spaces, which are not expressive enough to capture many
natural kinds of constraints such as disjunctive constraints. We provide two characterizations of
the optimal mechanism based on allocations and connected components; both make use of an
underlying network flow structure to the mechanism design. Our results significantly generalize
and improve the prior state of the art in revenue-optimal efficient mechanism design. They also
considerably expand the scope of what forms of agent information can be expressed and used to
improve revenue.

Chapter 8: Learning to Generate Artificial Competition We show how an auction designer
can inject competition into auctions to boost revenue while striving to maintain efficiency. First,
we invent a new auction family that enables the auction designer to specify competition in a
precise, expressive, and interpretable way. We then introduce a new model of bidder behavior
and individual rationality to understand how bidders act when prices are too competitive. Under
our bidder behavior model, we use our new competitive auction class to study revenue-optimal
efficient mechanism design under three different knowledge models for the auction designer:
knowledge of full bidder value distributions, knowledge of bidder value quantiles, and knowledge
of historical bidder valuation data.

Part III. Other Learning Models for Mechanism Design
There has been significant work on a subfield of automated mechanism design where the designer
only has samples from the valuation distribution, initiated by Likhodedov and Sandholm [2004],
Balcan et al. [2005]. This has been used to design high-revenue auctions, pricing structures,
lotteries, and many other mechanisms [Morgenstern and Roughgarden, 2015, 2016, Balcan et al.,
2016, 2018d]. The final part of this thesis investigates a few applications of this framework. The
work covered in this part is joint with Nina Balcan and Tuomas Sandholm.

Chapter 9: Learning Revenue-Maximizing Two-Part Tariffs A two-part tariff is a pricing
scheme that consists of an up-front lump sum fee and a per unit fee. Various products in the real
world are sold via a menu, or list, of two-part tariffs—for example gym memberships, cell phone
data plans, etc. We develop algorithms for learning high-revenue menus of two-part tariffs from

4

buyer valuation data, in the setting where the mechanism designer has access to samples from the
distribution over buyers’ values rather than an explicit description thereof. Our algorithms have
clear direct uses, and provide the missing piece for the recent generalization theory of two-part
tariffs.

Chapter 10: Within-Instance Mechanism Design We present applications of sample-based
automated mechanism design to multi-item, multi-bidder revenue maximization (for limited sup-
ply) when samples are not available. First, we present a learning-within-an-instance mechanism
that generalizes and improves upon prior random-sampling mechanisms for unlimited supply,
and prove revenue guarantees for it. Second, we show how to design an auction that is robust
to market shrinkage and uncertainty: if there is a fixed population of buyers known to the seller,
but only some random (unknown) fraction of them participate, how much revenue can the seller
guarantee?

5

6

Part I

Cutting Plane Theory and Configuration
for Integer Programming

7

Chapter 2

Primer on Integer Programming, Cutting
Planes, and Branch-and-Cut Tree Search

Integer programming is one of the most broadly-applicable methods for optimization, used to
formulate problems from operations research (such as routing, scheduling, and pricing), machine
learning (such as adversarially-robust learning and clustering), economics and market design
(such as auctions, revenue management, and efficient trade/exchange), and many other areas
cutting across the sciences. Branch-and-cut (B&C) is the most widely-used algorithm for solving
integer programs (IPs), and cutting planes are some of the most important components of B&C.
We next review these key concepts.

Integer and linear programs. An integer program (IP) is an optimization problem of the form

max{c⊤x : Ax ≤ b,x ≥ 0,x ∈ Zn}, (2.1)

where c ∈ Rn is the objective vector, A ∈ Zm×n is the constraint matrix, and b ∈ Zm is the
constraint vector. The linear programming (LP) relaxation is formed by removing the integrality
constraints: max{c⊤x : Ax ≤ b,x ≥ 0}. We denote the optimal solution to the above IP by x∗

IP

and its LP-optimal solution by x∗
LP. Let z∗LP = c⊤x∗

LP. Integer programming is NP-complete.

Cutting planes. A cutting plane is a constraint α⊤x ≤ β. Let P be the feasible region of the
LP relaxation of the above IP and PI = P ∩ Zn be the IP’s feasible set. A cut is valid if it is
satisfied by every integer point in PI , that is, α⊤x ≤ β for all x ∈ PI . A valid cut separates
a point x ∈ P \ PI if α⊤x > β. We refer to a cut both by its parameters (α, β) ∈ Rn+1 and
the halfspace α⊤x ≤ β in Rn. A valid cut that separates x∗

LP improves the LP estimate used in
branch-and-bound, detailed next.

Branch-and-cut. We provide a high-level overview of Branch-and-Cut (B&C) based on the
textbook presentation in Conforti et al. [2014]. B&C is the de facto algorithm for solving integer
programs. Given an IP, B&C searches the IP’s feasible region by building a binary search tree.
B&C solves the LP relaxation of the input IP and then adds any number of cutting planes. It
stores this information at the tree’s root. Let x∗

LP = (x∗
LP[1], . . . ,x

∗
LP[n]) be the solution to

9

the LP relaxation with the addition of the cutting planes. B&C next uses a variable selection
policy to choose a variable xi to branch on. This means that it splits the IP’s feasible region
in two: one set where xi ≤ ⌊x∗

LP[i]⌋ and the other where xi ≥ ⌈x∗
LP[i]⌉. It is critical that the

branching on xi is done in this exact manner. Any other partition of the solution space of the
form xi ≤ k, xi ≥ k + 1, k ̸= ⌊x∗

LP[i]⌋ would yield a redundant subproblem that will have
the same LP solution as its parent. The left child of the root now corresponds to the IP with a
feasible region defined by the first subset and the right child likewise corresponds to the second
subset. B&C then chooses a leaf using a node selection policy and recurses, adding any number
of cutting planes, branching on a variable, and so on. B&C prunes a node—which means that it
will never branch on that node—if 1) the LP relaxation at the node is infeasible, 2) the optimal
solution to the LP relaxation is integral, or 3) the optimal solution to the LP relaxation is no better
than the best integral solution found thus far. Eventually, B&C will prune every leaf, at which
point it has found the globally optimal integral solution. The final tree built by B&C serves as a
proof of optimality.

In Chapter 4, we study data-dependent tuning of branch-and-cut hyperparameters. There, we
assume there is a bound κ on the size of the tree B&C is allowed to build before termination,
as is common in prior research [Hutter et al., 2009, Kleinberg et al., 2017, 2019, Balcan et al.,
2018a].

10

Chapter 3

New Sequence-Independent Lifting
Techniques for Cover Inequalities and
When They Induce Facets

Lifting is a technique for strengthening cutting planes for integer programs by increasing the co-
efficients of variables that are not in the cut. We study lifting methods for valid cuts of knapsack
polytopes, which have the form conv(P) where

P =

{
x ∈ {0, 1}n :

n∑
j=1

ajxj ≤ b

}

for a1, . . . , an, b ∈ N with 0 < a1, . . . , an ≤ b. We interpret P as the set of feasible packings
of n items with weights a1, . . . , an into a knapsack of capacity b. Such knapsack constraints
arise in binary integer programs from various industrial applications such as resource allocation,
auctions, and container packing. They are a very general and expressive modeling tool, as any
linear constraint involving binary variables admits an equivalent knapsack constraint by replacing
negative-coefficient variables with their complements. A minimal cover is a set C ⊆ {1, . . . , n}
such that

∑
j∈C aj > b and

∑
j∈C\{i} aj ≤ b for all i ∈ C. That is, the items in C cannot all fit in

the knapsack, but any proper subset of C can. The minimal cover inequality/cut corresponding
to C is the inequality ∑

j∈C

xj ≤ |C| − 1,

which enforces that the items in C cannot all be selected. A lifting of the minimal cover inequality
is any valid inequality of the form∑

j∈C

xj +
∑
j /∈C

αjxj ≤ |C| − 1. (3.1)

The lifting coefficients αj are often computed one-by-one—a process called sequential lifting
that depends on the lifting order. Sequential lifting can be expensive since one must solve an
optimization problem for each coefficient. Furthermore, one must reckon with the question of

11

what lifting order to use. To lessen this computational burden, the lifting coefficients can be com-
puted simultaneously. This method is called sequence-independent lifting and is the focus of this
work. Our contributions include: (i) a generalization of the seminal sequence-independent lifting
method developed by Gu et al. [2000] and a correction of their proposed generalization; (ii) the
first broad conditions under which sequence-independent liftings that are efficiently computable
from the underlying cover—via our new techniques—define facets of conv(P) (facet-defining
cuts are the gold standard for cutting planes since they are in a formal sense the strongest kind
of cutting plane); and (iii) new cover inequality generation methods that, together with our new
lifting techniques, display promising practical performance in experiments.

Preliminaries on cutting planes and sequence-independent lifting
Facet-defining cuts A cut a⊤x ≤ b is a facet of conv(P) if it defines a dimension-(dim(P)−1)
face of conv(P). Facet-defining cuts are thus the strongest kind of cutting plane and provide the
best dual bounds for use within branch-and-cut.

Lifting We begin with an overview of the lifting function f : [0, b] → R associated with a
minimal cover C, defined by

f(z) = |C| − 1−max

{∑
j∈C

xj :
∑
j∈C

ajxj ≤ b− z, xj ∈ {0, 1}

}
.

For i /∈ C, the value f(ai) is the maximum possible coefficient αi such that
∑

j∈C xj + αixi ≤
|C|−1 is valid for conv(P). The lifting function has a more convenient closed form due to Balas
[1975]. First, relabel the items so C = {1, . . . , t} and a1 ≥ · · · ≥ at. Let µ0 = 0 and for
h = 1, . . . , t let µh = a1 + · · ·+ ah. Let λ = µt − b > 0 be the cover’s excess weight. Then,

f(z) =

{
0 0 ≤ z ≤ µ1 − λ

h µh − λ < z ≤ µh+1 − λ.

The lifting function has an intuitive interpretation: f(z) is the maximum h such that an item of
weight z cannot be brought into in C and fit in the knapsack, even if we are allowed to discard
any h items from C. The lifting function f may be used to maximally lift a single variable not
in the cover. To lift a second variable, a new lifting function must be computed. This (order-
dependent) process can be continued to lift all remaining variables, and is known as sequential
lifting. Conforti et al. [2014] and Hojny et al. [2020] contain further details.

Superadditivity and sequence-independent lifting A function g : D → R is superadditive
if g(u + v) ≥ g(u) + g(v) for all u, v, u + v ∈ D. If g ≤ f is superadditive,

∑
j∈C xj +∑

j /∈C g(aj)xj ≤ |C| − 1 is a valid sequence-independent lifting for conv(P). This result is
due to Wolsey [1977]; Gu et al. [2000] generalize to mixed 0-1 integer programs. The lifting
function f is generally not superadditive. Gu et al. [2000] construct a superadditive function
g ≤ f as follows. Let ρh = max{0, ah+1 − (a1 − λ)} be the excess weight of the cover if the

12

heaviest item is replaced with a copy of the (h+ 1)-st heaviest item. For h ∈ {0, . . . , t− 1}, let
Fh = (µh − λ+ ρh, µh+1 − λ] and for h ∈ {1, . . . , t− 1}, let Sh = (µh − λ, µh − λ+ ρh]. Sh is
nonempty if and only if ρh > 0. For w : [0, ρ1]→ [0, 1], Gu et al. define gw(z) =

0 z = 0

h z ∈ Fh, h = 0, . . . , t− 1

h− w(µh − λ+ ρh − z) z ∈ Sh, h = 1, . . . , t− 1.

Gu et al. prove that for w(x) = x/ρ1, gw is superadditive. We call this particular lifting function
the Gu-Nemhauser-Savelsbergh (GNS) lifting function. Furthermore, gw is undominated, that is,
there is no superadditive g′ with f ≥ g′ ≥ gw and g′(z′) > gw(z

′) for some z′ ∈ [0, b].

Our contributions
In Section 3.1, we prove that under a certain condition, gw is superadditive for any linear sym-
metric function w. This generalizes the Gu et al. [2000] result for w(x) = x/ρ1 and furthermore
corrects an error in their proposed generalization, which incorrectly claims w can be any sym-
metric function. Of particular interest is the constant function w = 1/2; we call the resulting
lifting piecewise-constant (PC) lifting. In Section 3.1.1 we give a thorough comparison of PC and
GNS lifting. We show that GNS lifting can be arbitrarily worse than PC lifting, and characterize
the full domination criteria between the two methods. In Section 3.1.2, we provide a broad set
of conditions under which PC lifting defines facets of conv(P). To our knowledge, these are the
first conditions for facet-defining sequence-independent liftings that are efficiently computable
from the underlying cover.1 Furthermore, PC-lifted cuts only have integral and half-integral co-
efficients making them practically relevant for solvers. In Section 3.1.2 we give an example that
shows PC lifting can be significantly stronger than another half-integral sequence-independent
lifting procedure due to Letchford and Souli [2019] that is currently implemented in the FICO
Xpress solver [Perregard, 2024].

In Section 3.2, we experimentally evaluate our lifting techniques in conjunction with a num-
ber of novel cover cut generation techniques. Our cut generation techniques do not solve ex-
pensive NP-hard separation problems (which has been the norm in prior research Kaparis and
Letchford [2010]). Instead, we cheaply generate many candidate cover cuts based on qualitative
criteria, lift them, and check for separation only before adding the cut. This approach is effective
in experiments with CPLEX.

Related work
Cover cuts and their associated separation routines were first shown to be useful in a branch-
and-cut framework by Crowder et al. [1983]. Since then, there has been a large body of work
studying various computational aspects, both theoretical and practical, of cover cuts, separation

1Balas [1975] proved that lifting coefficients are sometimes fully determined independent of the lifting order, in
which case sequential and sequence-independent lifting are the same and yield a facet. When sequence-independent
lifting can be non-trivially performed, ours is the first such result.

13

routines, and lifting. The seminal work of Gu et al. [2000] showed how sequence-independent
lifting can be performed efficiently using gw for w(x) = x/ρ1. Gu et al. [1998] perform a
computational study of sequential lifting, and Wolter [2006] presents some computational re-
sults on the interaction between the sequence-independent lifting technique of Gu et al. [2000]
and different separation techniques. To our knowledge, this is the only computational study
of sequence-independent lifting published to date. Our computational study takes a different
approach than prior work. Rather than solving separation problems exactly, which involves ex-
pensive optimization, we generate large pools of candidate cover cuts, lift them, and check for
separation before adding cuts to the formulation. This approach proves to be effective in our
experiments. (The separation problem is NP-hard [Klabjan et al., 1998, Gu et al., 1999], but
checking violation is a trivial linear time operation. More on separation can be found in Kaparis
and Letchford [2010].) Marchand et al. [2002] and Letchford and Souli [2019, 2020] present
other sequence-independent lifting functions based on superadditivity.

3.1 New Sequence-Independent Lifting Functions: Structure
and Properties

We generalize the result of Gu et al. [2000] and also point out an error in their suggested gen-
eralization. Gu et al. claim that if µ1 − λ ≥ ρ1, then gw is superadditive for any nondecreasing
w : [0, ρ1] → [0, 1] such that w(x) + w(ρ1 − x) = 1. This claim is incorrect (we provide
counterexamples in App. A). We show that this claim is correct when restricted to linear w.
Theorem 3.1.1. For k ∈ [0, 1/ρ1], let wk(x) = kx+ 1−kρ1

2
, and let gk = gwk

. If µ1 − λ ≥ ρ1, gk
is superadditive and undominated.

The GNS lifting function is given by g1/ρ1 . The proof of Theorem 3.1.1 follows the proof
that g1/ρ1 is superadditive Gu et al. [2000] with a few key modifications; we defer it to App. A.
Of particular interest is the superadditive lifting function g0, which we refer to as the piecewise-
constant (PC) lifting function. The condition µ1 − λ ≥ ρ1 is necessary for superadditivity of g0
(proven in App. A). The following result shows that the lifting obtained via gk is dominated by
the union of the liftings obtained via g0 (PC lifting) and g1/ρ1 (GNS lifting). Thus, in order to get
as close to conv(P) as possible, it suffices to study these two lifting functions.
Proposition 3.1.2. Let k ∈ (0, 1/ρ1). If

∑
j∈C xj +

∑
j /∈C g0(aj)xj ≤ |C| − 1 and

∑
j∈C xj +∑

j /∈C g1/ρ1(aj)xj ≤ |C| − 1, then
∑

j∈C xj +
∑

j /∈C gk(aj)xj ≤ |C| − 1.

Proof. We have gk(z) = kρ1g1/ρ1(z) + (1 − kρ1)g0(z) by direct computation, so gk lifting is a
convex combination of GNS and PC lifting.

Example 3.1.3. Let C = {1, 2, 3, 4} and consider a knapsack constraint of the form 16x1 +
14x2 + 13x3 + 9x4 +

∑
j /∈C ajxj ≤ 44. C is a minimal cover with µ1 = 16, µ2 = 30, µ3 = 43,

µ4 = 52, λ = 8, ρ1 = 6, ρ2 = 5, ρ3 = 1, and µ1−λ ≥ ρ1. Fig. 3.1 depicts g0 and g1/ρ1 truncated
to the domain [µ1 − λ, µ3 − λ] = [8, 35].

14

//

Figure 3.1: The PC lifting function g0 is the piecewise constant step function depicted by the
solid black lines. The GNS lifting function g1/ρ1 is obtained by replacing the solid lines in the
intervals Sh with the depicted dashed lines. If all coefficients of variables being lifted lie in the
blue and red regions with at least three coefficients in the leftmost blue region, PC lifting is facet-
defining and dominates GNS lifting (Theorem 3.1.8).

3.1.1 Comparisons between PC and GNS lifting
The following result shows GNS lifting can be arbitrarily worse than PC lifting.
Proposition 3.1.4. For any ε > 0, t ∈ N there exists a knapsack constraint with a minimal cover
C of size t such that PC lifting yields∑

j∈C

xj +
∑
j /∈C

1

2
xj ≤ |C| − 1

and GNS lifting is dominated by ∑
j∈C

xj +
∑
j /∈C

εxj ≤ |C| − 1.

The proof is in Appendix A. At a high level, we construct an instance where the length of
S1, which is ρ1, is large, and consider coefficients that are at the leftmost part S1. GNS barely
lifts such coefficients, while PC yields lifting coefficients of 1/2. The next proposition fully
characterizes the domination criteria between PC and GNS lifting. Its proof is immediate from
the plots in Fig. 3.1.
Proposition 3.1.5. Assume µ1 − λ ≥ ρ1. Furthermore, suppose {j /∈ C : ∃h s.t. aj ∈ Sh} ≠ ∅
(else, GNS and PC trivially produce the same cut). If, for all j /∈ C,

1. aj ∈ Sh =⇒ ρh > ρ1
2

and aj ≤ µh−λ+ρh− ρ1
2

with at least one such aj ∈ Sh satisfying
aj < µh − λ+ ρh − ρ1

2
, PC strictly dominates GNS.

2. aj ∈ Sh =⇒ ρh > ρ1
2

and aj = µh − λ+ ρh − ρ1
2

, PC and GNS yield the same cut.
3. aj ∈ Sh =⇒ (ρh ≤ ρ1

2
) or (ρh > ρ1

2
and aj > µh − λ+ ρh − ρ1

2
), GNS strictly dominates

PC.
4. Otherwise, neither PC nor GNS dominates the other.

Example 3.1.6. Consider the constraint 16x1 + 14x2 + 13x3 + 9x4 + a5x5 + a6x6 + a7x7 ≤ 44
with minimal cover C = {1, 2, 3, 4}.

15

1. Let a5 = 9, a6 = 10, a7 = 23. GNS yields

x1 + x2 + x3 + x4 +
1

6
x5 +

1

3
x6 +

4

3
x7 ≤ 3.

PC yields the dominant cut

x1 + x2 + x3 + x4 +
1

2
x5 +

1

2
x6 +

3

2
x7 ≤ 3.

2. Let a5 = 11, a6 = 17, a7 = 24. GNS and PC both yield the cut

x1 + x2 + x3 + x4 +
1

2
x5 + x6 +

3

2
x7 ≤ 3.

3. Let a5 = 12, a6 = 13, a7 = 26. GNS yields

x1 + x2 + x3 + x4 +
2

3
x5 +

5

6
x6 +

11

6
x7 ≤ 3.

PC yields the weaker cut

x1 + x2 + x3 + x4 +
1

2
x5 +

1

2
x6 +

3

2
x7 ≤ 3.

4. Let a5 = 9, a6 = 13, a7 = 24. GNS yields

x1 + x2 + x3 + x4 +
1

6
x5 +

5

6
x6 +

3

2
x7 ≤ 3.

PC yields

x1 + x2 + x3 + x4 +
1

2
x5 +

1

2
x6 +

3

2
x7 ≤ 3.

Neither cut is dominating.
Open question: Gu et al. [1999] and Hunsaker and Tovey [2005] construct knapsack problems
where branch-and-cut requires a tree of exponential size, even when all lifted cover inequalities
(all inequalities of the form (3.1)) are added to the formulation. Do there exist knapsack problems
where branch-and-cut requires exponential-size trees when all GNS-lifted cover inequalities are
added, but does not when PC-lifted cover inequalities are added (or vice versa)?

3.1.2 Facet defining inequalities from sequence-independent lifting
We now provide a broad set of sufficient conditions under which PC lifting yields facet-defining
inequalities. Our result relies on the following complete characterization of the facets of the
knapsack polytope obtained from lifting minimal cover cuts, due to Balas and Zemel [Balas and
Zemel, 1978, Hojny et al., 2020], which we restate using the notation and terminology of Gu
et al. [2000] and Conforti et al. [2014, Section 7.2]. Given a minimal cover C and j /∈ C, let
h(j) be the index such that µh(j) ≤ aj < µh(j)+1.

16

Theorem 3.1.7 (Balas and Zemel [1978]). Let C be a minimal cover. Let J = {j /∈ C : aj >
µh(j)+1 − λ} and let I = ({1, . . . , n} \ C) \ J . Let Q(J) = {Q ⊆ J :

∑
j∈Q aj ≤ b,Q ̸= ∅}.

The inequality ∑
j∈C

xj +
∑
j /∈C

αjxj ≤ |C| − 1

is a facet of conv(P) if and only if αj = h(j) + δj · 1(j ∈ J) where each δj ∈ [0, 1] and
δ = (δj)j∈J is a vertex of the polyhedron T ={

δ ∈ R|J | :
∑
j∈Q

δj ≤ f
(∑

j∈Q

aj

)
−
∑
j∈Q

h(j) ∀ Q ∈ Q(J)
}
.

The characterization of facets based on T in Theorem 3.1.7 does not translate to a tractable
method of deriving facet-defining inequalities, since one would need to enumerate the vertices of
T . In fact, Hartvigsen and Zemel [1992] show the question of determining whether or not a cut-
ting plane is a valid lifted cover cut is co-NP-complete. Deciding whether or not a cutting plane
is a facet-defining lifted cover cut is in DP (DP is a complexity class introduced by Papadimitriou
and Yannakakis [1982] to characterize the complexity of facet recognition). Critically, these
complexity results hold when the underlying cover is given as input.

Our result, to the best of our knowledge, provides the first broad set of sufficient conditions
under which sequence-independent liftings that can be efficiently computed from the underlying
minimal cover—via PC lifting—are facet defining. We now state and prove our result.
Theorem 3.1.8. Let C = {1, . . . , t}, a1 ≥ · · · ≥ at, be a minimal cover such that µ1−λ ≥ ρ1 >
0. Suppose |{j /∈ C : aj ∈ S1}| ≥ 3 and for all j /∈ C:

aj ∈ Sh =⇒ ρh >
ρ1
2

and aj ≤ µh − λ+ ρh −
ρ1
2
,

aj ∈ Fh =⇒ aj ≥ µh (equivalently h(j) ≥ h).

Then, the cut ∑
j∈C

xj +
∑
j /∈C

g0(aj)xj ≤ |C| − 1,

obtained via PC lifting, defines a facet of conv(P).

Proof. First we show that J = ∪h≥1{j /∈ C : aj ∈ Sh} and I = ∪h≥0{j /∈ C : aj ∈ Fh}. Let
j /∈ C be such that aj ∈ Sh. We have aj > µh − λ > µh−1 (as λ ≤ ai for any i ∈ C) and
aj ≤ µh−λ+ ρh− ρ1

2
< µh−λ+ ρh < µh (the final inequality follows directly from expanding

out µh and ρh). So h(j) = h − 1, and as aj > µh − λ = µh(j)+1 − λ, j ∈ J . Next, let j /∈ C
be such that aj ∈ Fh. Then, aj ≤ µh+1 − λ < µh+1, and by assumption aj ≥ µh, so h(j) = h.
Therefore aj ≤ µh(j)+1 − λ, and so j ∈ I . The facts that aj ∈ Sh =⇒ h(j) = h − 1 and
aj ∈ Fh =⇒ h(j) = h will be used repeatedly in the remainder of the proof.

We now determine the constraints defining the polyhedron T ⊂ R|J | in Theorem 3.1.7. (For
j ∈ I , PC lifting produces a coefficient of h(j), as required by Theorem 3.1.7.) Partition J into
two sets J = J1 ∪ J>1 where J1 = {j /∈ C : aj ∈ S1} and J>1 = ∪h>1{j /∈ C : aj ∈ Sh}. Each
singleton Q = {j} ∈ Q(J) yields the constraint δj ≤ 1. Consider now Q = {j1, j2} ∈ Q(J).

17

We consider two cases, one where j1 ∈ J1 and the other where j1 ∈ J>1. First, let j1 ∈ J1.
Let h be such that aj2 ∈ Sh. We have aj1 + aj2 > aj2 > µh − λ, so f(aj1 + aj2) ≥ h, and
aj1 + aj2 ≤ µ1 − λ + ρ1

2
+ µh − λ + ρh − ρ1

2
= a1 − λ + µh − λ + (ah+1 − a1 + λ) = µh +

ah+1−λ = µh+1−λ, so f(aj1 +aj2) ≤ h. Therefore f(aj1 +aj2) = h, and we get the constraint
δj1 + δj2 ≤ f(aj1 + aj2)− h(j1)− h(j2) = h− 0− (h− 1) = 1. Suppose now that j1, j2 ∈ J>1

(if j2 ∈ J1 that is handled by the first case). Let h1, h2 be the integers such that aj1 ∈ Sh1 and
aj2 ∈ Sh2 . We have aj1 + aj2 > µh1 −λ+µh2 −λ = (a1 + · · ·+ ah1)+ (a1 + · · ·+ ah2)− 2λ >
(a1 + · · · + ah1−1) + (a1 + · · · + ah2)− λ > µh1+h2−1 − λ so f(aj1 + aj2) ≥ h1 + h2 − 1, and
f(aj1 + aj2)−h(j1)−h(j2) ≥ 1. So for such pairs, we obtain a constraint δj1 + δj2 ≤ H(j1, j2),
where H(j1, j2) ≥ 1. Finally, we consider Q ∈ Q(J) with |Q| ≥ 3. For j ∈ Q let hj be the
integer such that aj ∈ Shj

. We claim that∑
j∈Q

aj > µ∑
j∈Q hj−⌊|Q|/2⌋ − λ.

This claim is succinctly proven using the quantities used to prove Theorem 3.1.1 (defined by Gu
et al. [2000] to prove superadditivity of g1/ρ1). To avoid notational clutter, we defer its proof to
App. A. The claim implies f(

∑
j∈Q aj) ≥

∑
j∈Q hj − ⌊|Q|/2⌋, so the constraint induced by Q

is of the form
∑

j∈Q δj ≤ H(Q), where

H(Q) := f
(∑

j∈Q

aj

)
−
∑
j∈Q

h(j) ≥
∑
j∈Q

hj − ⌊|Q|/2⌋ −
∑
j∈Q

(hj − 1) = ⌈|Q|/2⌉.

We can now write down a complete description of T asδ ∈ R|J | :

(1) δj ≤ 1∀ j ∈ J

(2) δi + δj ≤ 1∀ (i, j) ∈ J1 × J

(3) δi + δj ≤ H(i, j)∀ (i, j) ∈ J>1 × J>1

(4)
∑

j∈Q δj ≤ H(Q)∀Q ∈ Q(J), |Q| ≥ 3


where H(i, j) ≥ 1 for all (i, j) ∈ J>1 × J>1 and H(Q) ≥ ⌈|Q|/2⌉ for all Q ∈ Q(J), |Q| ≥ 3.
We argue that δ = (1/2, . . . , 1/2) is a vertex of T . Constraints of type (1), (3), and (4) are
satisfied, and type (2) constraints are tight. Fix distinct j1, j2, j3 ∈ J1. The set of |J | type (2)
constraints {δj + δj1 ≤ 1 ∀ j ∈ J \ {j1}} ∪ {δj2 + δj3 ≤ 1} is linearly independent, and hence
δ = (1/2, . . . , 1/2) is a vertex of T . PC lifting produces precisely the coefficients prescribed by
Theorem 3.1.7: g0(aj) = h(j) for j ∈ I and g0(aj) = h(j) + 1

2
for j ∈ J , so we are done.

Fig. 3.1 illustrates the sufficient conditions of Theorem 3.1.8. While a facet-defining PC
lifting can be efficiently obtained given a minimal cover satisfying the sufficient conditions of
Theorem 3.1.8, we do not show how to find a minimal cover satisfying these conditions. We
conjecture that finding such a cover is NP-hard.
Example 3.1.9. Consider the constraint 16x1 + 14x2 + 13x3 + 9x4 + 9x5 + 10x6 + 11x7 +
23x8 ≤ 44 with minimal cover C = {1, 2, 3, 4}. GNS lifting yields the cut x1 + x2 + x3 +
x4 +

1
6
x5 +

1
3
x6 +

1
2
x7 +

4
3
x8 ≤ 3 and PC lifting yields the strictly dominant facet-defining cut

x1 + x2 + x3 + x4 +
1
2
(x5 + x6 + x7) +

3
2
x8 ≤ 3.

18

Other half-integral liftings There exist facet-defining lifted cover inequalities with half-integral
coefficients that cannot be obtained via PC lifting. Balas and Zemel [1978] provide an example
of a knapsack constraint and minimal cover for which δ = (1/2, . . . , 1/2) is a vertex of T , but
µ1 − λ ≥ ρ1 does not hold. It is an interesting open question to investigate when such facets
arise and how to (efficiently) find them. The lifting procedure of Letchford and Souli [2019] also
produces half-integral coefficients, but it is unclear when it can yield facets (it produces cuts that
in general are incomparable with ours as their lifting function is also undominated). In Exam-
ple 3.1.9, Letchford and Souli’s lifting technique (which is implemented in version 9.5 of the
FICO Xpress solver [Perregard, 2024]) yields the cut x1 + x2 + x3 + x4 + x8 ≤ 3, a significantly
weaker cut than the facet-defining PC cut. The numerical properties of half-integral cuts make
them desirable for implementation within a solver, and the computational overhead of PC lifting
(sorting the cover elements) is the same as Letchford and Souli’s lifting.

It would be interesting to derive similar conditions under which GNS lifting defines facets.
The following sufficient conditions are immediate, but it is likely that a stronger result could be
derived. We leave this as an open question.
Proposition 3.1.10. If for all j /∈ C, aj ∈ Sh =⇒ aj = µh − λ + ρh, GNS lifting strictly
dominates PC lifting and defines a facet of conv(P).

Proof. The condition implies g1/ρ1 coincides with the lifting function f on all aj , j /∈ C, which
(e.g., Prop. 7.2 in Conforti et al. [2014]) means GNS lifting is facet defining.

3.2 Experimental Evaluation
We evaluate our new sequence-independent lifting techniques in conjunction with a number of
methods for generating the minimal cover cuts that are to be lifted. We describe each component
of the experimental setup below.

Cover cut generation Let
∑n

j=1 ajxj ≤ b be a knapsack constraint, let xLP be the LP optimal
solution at a given node of the branch-and-cut tree, and let I = {i : xLP

i > 0}. Enumerate I as
I = {1, . . . , s} (relabeling variables if necessary). We do not include variables not in I in any of
the minimal covers, since these do not contribute to the violation of xLP (though such variables
may be assigned a nonzero coefficient in the lifted cover cut). Next, we present the five cover cut
generation techniques that we use in experiments.
Contiguous covers. First, sort the variables in I in descending order of weight; without loss of
generality relabel them so that a1 ≥ a2 ≥ · · · ≥ as. For each i ∈ {1, . . . , s}, let j ∈ {i+1, . . . , s}
be such that C = {i, i + 1, . . . , j} is a minimal cover (if such a j exists). This is the contiguous
cover starting at i. We generate all such contiguous cover cuts for each i. (Balcan et al. [2022b]
introduced these cover cuts, though they did not lift them nor did they restrict to xLP

i > 0.)
Spread covers. As before, sort the variables in I in descending order of weight; a1 ≥ · · · ≥ as.
For each i, let j ∈ {i + 1, . . . , s} be maximal (if such a j exists) such that there exists k ∈
{j + 1, . . . , s} such that C = {i} ∪ {j, . . . , k} is a minimal cover. Intuitively, i can be thought
of as a heavy “head”, and the “tail” from j to k is as light as possible. We coin this the spread
cover with head i. We generate all such spread cover cuts for each i.

19

Algorithm 1 Lifted cover cut generation at a node of branch-and-cut

Input: IP data c,A, b, LP optimum at current node xLP, per-node cut limit ℓ
1: Initialize cuts = ∅.
2: for each knapsack constraint a⊤x ≤ b do
3: for each cut ∈ CoverCuts(a, b, c,xLP) do
4: for each liftedcut ∈ Lift(cut) do
5: if liftedcut separates xLP then
6: cuts← cuts ∪ {liftedcut}.
7: Add the top min{ℓ, |cuts|} cuts in cuts with respect to efficacy.

Heaviest contiguous cover. We define this as the contiguous cover starting at 1.
Default cover. Sort (and relabel) the variables in I in descending order of LP value so that
xLP
1 ≥ · · · ≥ xLP

s . Let j be minimal so that {1, . . . , j} is a cover. Then, evict items, lightest
first, until the cover is minimal. We coin this the default cover. These cover cuts are loosely
based on the “default” separation routine implemented by Gu et al. [1998]. (Their routine was
for sequential lifting and does not directly carry over to our setting.) Wolter [2006] tested similar
routines.
Bang-for-buck cover. Sort (and relabel) the variables in I in descending order of “bang-for-
buck” so that c1

a1
≥ · · · cs

as
, where ci is variable i’s objective coefficient. Let j be minimal so that

{1, . . . , j} is a cover. Then, evict items, lightest first, until the cover is minimal. We coin this the
bang-for-buck cover.
Example 3.2.1. Consider the knapsack constraint

10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 6x6 + 5x7 + 4x8 ≤ 26,

suppose the LP optimal solution at the current branch-and-cut node is

xLP = (0.1, 0.8, 0.7, 0.4, 0, 1, 0.2, 0.8),

and suppose c = (5, 7, 9, 1, 2, 6, 6, 5). We have I = {1, 2, 3, 4, 6, 7, 8}. The contiguous mini-
mal covers are {1, 2, 3}, {2, 3, 4, 6}, {3, 4, 6, 7, 8}. The spread minimal covers are {1, 4, 6, 7},
{2, 4, 6, 7}, {3, 4, 6, 7, 8}. The heaviest contiguous cover is {1, 2, 3}. The default cover is
{2, 3, 6, 8}. The bang-for-buck cover is {2, 3, 6, 7}.

Lifting We evaluate three lifting methods. (1) GNS: The cover cut is lifted using g1/ρ1 . (2)
PC: If µ1 − λ ≥ ρ1 the cover cut is lifted using g0, and otherwise it is lifted using g1/ρ1 . (3)
Smart: If µ1−λ ≥ ρ1, two liftings are generated: one with g0 and one with g1/ρ1 . If either lifting
dominates the other, the weaker lifting is discarded. If µ1 − λ < ρ1, the cover cut is only lifted
using g1/ρ1 .

Integration with branch-and-cut Alg. 1 is the pseudocode for adding lifted cover cuts at a
node of the branch-and-cut tree and is called once at every node of the tree. It uses the prescribed
lifting method Lift atop the prescribed cover cut generation method CoverCuts for each

20

constraint, and adds the resulting lifted cut to a set of candidate cuts if it separates the current LP
optimum xLP. It adds the ℓ deepest cuts among the candidate cuts to the formulation. (The depth
or efficacy of a cut α⊤x ≤ β is the quantity α⊤xLP−β

∥α2∥ and measures the distance between the
cut and xLP.) The ℓ cuts are added in a single round at the current node, and no further cuts are
generated at that node. Alg. 1 does not solve NP-hard separation problems and instead relies on
fast ways of generating candidate cuts through CoverCuts, and only adds those that separate
xLP.

Experimental results We evaluated our techniques on five problem distributions: two distribu-
tions over winner-determination problems in multi-unit combinatorial auctions (decay-decay [Sand-
holm et al., 2002] and multipaths from CATS version 1.0 [Leyton-Brown et al., 2000]) and three
distributions over multiple knapsack problems (uncorrelated and weakly correlated benchmark
distributions from Fukunaga [2011] and Chvátal from Balcan et al. [2022b]). We ran exper-
iments in C++ using the callable library of CPLEX version 20.1 on a 64-core machine, and
implemented Alg. 1 with ℓ = 10 within a cut callback. We generated 100 integer programs from
each distribution. We set a 1 hour time limit, allocated 16GB of RAM, and used one thread for
each integer program.

We present illustrative results in Fig. 3.2, focusing on settings where PC lifting had significant
impact. The full set of experiments are in the full version of the paper.2 We focus on tree size
as the performance measure, but we provide full run-time results in the full paper. Each curve
is labeled setting/lifting/covers or setting/CPLEX. The setting label is either
empty, np, or d. Empty corresponds to all cuts, all heuristics, and presolve off. A setting of np
denotes presolve off and all other settings untouched. A setting of d denotes the default settings
(this setting is incompatible with our lifting implementations since presolve is incompatible with
cut callbacks). If an underscore follows the label, CPLEX’s internal cover cut generation is
turned off; otherwise it is on. To ensure fair comparisons, in all CPLEX runs not involving our
new techniques (those labeled setting/CPLEX), we register a dummy cut callback that does
nothing. This disables proprietary techniques such as “dynamic search” which do not support
callbacks and thus do not support experiments of the type required in this work.

We now describe the performance plots (Fig. 3.2), which display how many instances each
method was able to solve using trees smaller than the prescribed size on the x-axis within the
1 hour time limit. Weakly correlated, contiguous covers (top left): GNS solves 81 instances,
Smart solves 83 instances, and PC solves 88 instances. These all outperform default CPLEX
which solves 80 instances and builds trees an order of magnitude larger. Uncorrelated, contigu-
ous covers (top right): GNS solves 43 instances, Smart solves 48 instances, and PC solves 55
instances, while default CPLEX solves 78 instances. Chvátal, heaviest covers (middle left): PC
lifting dramatically outperforms the other methods. Here, all CPLEX parameters are turned off,
so we are directly comparing our lifted cover cut implementations with CPLEX’s own cover cut
generation routines. PC and Smart strictly outperform GNS and CPLEX (GNS is the only one
unable to solve all 100 problems), and the largest tree size required by PC is an order of mag-
nitude smaller than any of the other methods. This translates into a run-time improvement as
well due to PC lifting. On the auction instances, there is little discernible performance difference

2https://arxiv.org/pdf/2401.13773

21

https://arxiv.org/pdf/2401.13773

between the lifting methods. Decay-decay, spread covers (middle right): our lifting implementa-
tions with all other CPLEX parameters off dramatically outperform default CPLEX on problems
requiring trees of size > 104 (though default CPLEX solves all 100 problems while our meth-
ods do not.) Multipaths, spread covers (bottom left): we once again directly compare our lifted
cover cut implementations with CPLEX’s internal cover cut generation. Here, spread covers
yield over an order of magnitude reduction in tree size relative to CPLEX, while default covers
perform extremely poorly. We observed that contiguous and spread covers generally resulted in
the best performance (with heaviest contiguous covers on par), and default and bang-for-buck
covers performed much worse.

While our techniques often led to significantly smaller trees than CPLEX, this did not trans-
late to significant run-time improvements. However, in most settings our techniques were not
too much slower than CPLEX and sometimes they were faster. Full run-time performance plots
are in the full paper. A possibility for this is that we did not limit the total number of cuts added
throughout the tree, causing the formulation to grow very large. We ran an experiment to investi-
gate the run-time impact of varying the number of cuts allowed (i) at each node (ℓ in Alg. 1) and
(ii) throughout the entire search tree. We plot the average run-time (time limit of 1 hour) over the
first 10 weakly-correlated instances using pc/contiguous, visualized as a heatmap (Fig. 3.2;
bottom right). The best settings (limiting the overall number of cuts to 800) yield an average run-
time of around 300 seconds and solved all 10 instances. Default CPLEX (d/CPLEX) averaged
roughly 900 seconds and only solved 9 instances to optimality.

3.3 Conclusions and Future Research
In this chapter we showed that PC lifting can be a useful alternative to GNS lifting. We proved
that under some sufficient conditions, PC lifting is facet-defining. To our knowledge, these are
the first broad conditions for facet-defining sequence-independent liftings that can be efficiently
computed from the underlying cover. We invented new cover cut generation routines, which in
conjunction with our new lifting techniques, displayed promising practical performance.

There are a number of important future research directions that stem from our findings. First,
a much more extensive experimental evaluation of PC lifting is needed. We have made several
simplifying design choices, including (i) adding only one wave of lifted cover cuts at each node;
(ii) ranking cuts solely based on efficacy (efficacy is not always the best quality to prioritize Bal-
can et al. [2022b,c], Turner et al. [2023]); (iii) keeping ℓ constant across nodes while it could
be a tuned hyperparameter, or even adjusted dynamically during search. Our experiments show
promise even with these fixed choices, but a more thorough suite of tests could find how to best
exploit the potential of our new techniques. Another direction here is to use machine learning
(which has already been used to tune cutting plane selection policies [Balcan et al., 2021d, Li
et al., 2023]) to decide when to use PC or GNS lifting. There might also be additional ways
of determining what lifting method to use based on problem structure, and detecting that au-
tomatically. Finally, PC lifting possesses strong numerical properties since it always involves
half-integral coefficients. That, along with its ability to yield facets, makes PC lifting practically
relevant for solvers.

22

103 104 105 106 107

Tree size

0

20

40

60

80

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

weakly_correlated; 35 items, 8 knapsacks
d/cplex
np/smart/contiguous
np/gns/contiguous
np/pc/contiguous

101 102 103 104 105 106 107

Tree size

0

20

40

60

80

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

uncorrelated; 35 items, 8 knapsacks
d/cplex
np/smart/contiguous
np/gns/contiguous
np/pc/contiguous

103 104 105 106

Tree size

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

chvatal; 60 items, 9 knapsacks

cplex
smart/heaviest_
gns/heaviest_
pc/heaviest_

102 103 104 105 106

Tree size

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

decay-decay; 100 items, 1000 bids
d/cplex
smart/spread_
gns/spread_
pc/spread_

103 104 105 106

Tree size

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

multipaths; 70 items, 2000 bids
cplex/
smart/spread_
gns/spread_
pc/spread_
smart/default_
gns/default_
pc/default_

200 400 600 800 1000 1200 1400 1600 1800 2000
Overall cut limit

5

10

15

20

Pe
r-n

od
e

cu
t l

im
it

weakly_correlated; pc/contiguous run-times

300

400

500

600

700

Figure 3.2: Illustrative experiments comparing different lifting methods. The first five plots are
performance plots for the five different problem distributions, with various parameter settings.
The heatmap illustrates the effect of varying the per-node cut limit and overall cut limit on run-
time (avg. over first 10 weakly-correlated instances).

23

24

Chapter 4

Learning to Tune Branch-and-Cut

The incorporation of cutting planes within the branch-and-bound algorithm, known as branch-
and-cut, forms the backbone of modern integer programming solvers. These solvers are the
foremost method for solving various discrete optimization problems. Choosing cutting planes
effectively is a major research topic in the theory and practice of integer programming.

The main components of B&C can be tuned and tweaked in a myriad of ways. The best IP
solvers like Gurobi, CPLEX, XPress, HiGHS, SCIP, and others employ an array of heuristics to
make decisions at every stage of B&C to reduce the solving time as much as possible, and give
the user freedom to tune the multitude of parameters influencing the search through the space of
feasible solutions. However, tuning the parameters that control B&C in a principled way is an
inexact science with little to no formal mathematical guidelines. A rapidly growing line of work
studies machine-learning approaches to speeding up the various aspects of B&C—in particu-
lar investigating whether high-performing B&C parameter configurations can be learned from a
training set of typical IPs from the particular application at hand [Alvarez et al., 2017, Horvitz
et al., 2001, Sandholm, 2013, Xu et al., 2008, Hutter et al., 2009, Leyton-Brown et al., 2009,
Kadioglu et al., 2010, Xu et al., 2011, Khalil et al., 2016]. Complementing the substantial num-
ber of experimental approaches using machine learning for B&C, we develop a generalization
theory that aims to provide a rigorous foundation for how well any B&C configuration learned
from training IP data will perform on new unseen IPs. In particular, we provide sample com-
plexity guarantees that bound how large the training set should be to ensure that no matter how
the parameters are configured (i.e., using any approach from prior research), the average perfor-
mance of branch-and-cut over the training set is close to its expected future performance. Sample
complexity bounds are important because with too small a training set, learning is impossible:
a configuration may have strong average performance over the training set but terrible expected
performance on future IPs. If the training set is too small, then no matter how the parameters
are tuned, the resulting configuration will not have reliably better performance than any default
configuration. State-of-the-art parameter tuning methods have historically come without any
provable guarantees, and our results fill in that gap for a wide array of tunable B&C parameters.

This chapter covers our generalization theory that provides provable guarantees for machine
learning approaches to cutting plane selection. These guarantees are obtained via a structural
analysis of branch-and-cut, in which we pin down conditions for different cutting planes to lead
to identical executions of branch-and-cut. First (Section 4.3), we present such guarantees for

25

the canonical family of Chvátal-Gomory cuts. Then (Section 4.4), we show how to extend the
underlying ideas behind this theory to derive sample complexity guarantees for tuning all critical
components of branch-and-cut simultaneously. This includes node selection, branching/variable
selection, and cut selection. Finally (Section 4.5), we extend our theory to the class of Gomory
mixed integer cuts, one of the most practically important cutting plane families in state-of-the-
art solvers. This requires a deeper structural analysis of the branch-and-cut algorithm that pins
down its behavior as a function of general cut parameters. Our structural analysis uncovers
fundamental geometric and combinatorial properties of branch-and-cut.

4.1 Learning Theory Background
We first define the formal notion of a sample complexity bound. The following definitions are
completely general, but we situate them in the context of algorithm configuration. Let X denote
the domain of possible inputs to an algorithm (for example, the set of all IPs with n variables
and m constraints). Let D be any unknown distribution over X (for example, representing IP
instances that model procurement auction clearing problems that a company solves daily). The
sample complexity of a class of real valued functions F = {f : X → R} is the minimum
number of independent samples required from D so that with high probability over the samples,
the empirical value of f on the samples is a good approximation of the expected value of f over
D, uniformly over all f ∈ F . In the settings we study, F is a collection of algorithms/algorithm
configurations; each f ∈ F measures, for example, the tree size built by branch-and-cut when
using the parameter tuning prescribed by f .

Formally, given an error parameter ε and confidence parameter δ, the sample complexity
NF (ε, δ) is the minimum N0 ∈ N such that for any N ≥ N0,

Pr
x1,...,xN∼D

(
sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

f(xi)− E
x∼D

[f(x)]

∣∣∣∣∣ ≤ ε

)
≥ 1− δ

for all distributions D supported on X . Equivalently, one can analyze the error rate εF (N, δ)
between the empirical value of any f ∈ F and its true expected value in terms of the number of
training samples N and the confidence parameter δ. NF (ε, δ) is the number of samples required
to achieve a prescribed error bound ε, while εF (N, δ) provides an error bound for any number N
of samples at hand. To prove bounds on NF (ε, δ) and εF (N, δ), we rely on the notion of pseudo-
dimension [Pollard, 1984], a well-known measure of a function class’s intrinsic complexity. The
pseudo-dimension of a collection of real-valued functions F = {f : X → R}, denoted by
Pdim(F), is the largest positive integer N such that there exist N inputs x1, . . . , xN ∈ X and N
thresholds r1, . . . , rN ∈ R such that

|{(sign(f(x1)− r1), . . . , sign(f(xN)− rN)) : f ∈ F}| = 2N .

Pseudo-dimension is related to sample complexity via the following uniform convergence theo-
rem [Pollard, 1984, Anthony and Bartlett, 1999]. If functions in F have bounded range [−H,H],
then

NF (ε, δ) = O

(
H2

ε2
(Pdim(F) + ln(1/δ))

)
and εF (N, δ) = O

(
H

√
Pdim(F) + ln(1/δ)

N

)
.

26

When the range of F is {0, 1}, the pseudo-dimension is equivalent to the VC dimension [Vapnik
and Chervonenkis, 1971].

4.2 Related Work
A growing body of research studies how machine learning can be used to speed up the time it
takes to solve integer programs, primarily from an empirical perspective, whereas we study this
problem from a theoretical perspective. This line of research has included general parameter tun-
ing procedures [Hutter et al., 2009, Kadioglu et al., 2010, Hutter et al., 2011, Sandholm, 2013],
which are not restricted to any one aspect of B&C. Researchers have also honed in on specific as-
pects of tree search and worked towards improving those using machine learning. These include
variable selection [Khalil et al., 2016, Alvarez et al., 2017, Di Liberto et al., 2016, Balcan et al.,
2018a, Gasse et al., 2019, Gupta et al., 2020], general branching constraint selection [Yang et al.,
2020], cut selection [Sandholm, 2013, Tang et al., 2020, Huang et al., 2021], node selection [Sab-
harwal et al., 2012, He et al., 2014], and heuristic scheduling [Khalil et al., 2017, Chmiela et al.,
2021]. Machine learning approaches to large neighborhood search have also been used to speed
up solver runtimes [Song et al., 2020].

This chapter contributes to a growing research area dubbed data-driven algorithm design
that provides sample complexity guarantees for algorithm configuration, often by using structure
exhibited by the algorithm’s performance as a function of its parameters [Gupta and Roughgar-
den, 2017, Balcan et al., 2017, 2018a, 2021a, Balcan, 2020]. This line of research has studied
algorithms for clustering [Balcan et al., 2017, 2018c, 2020a], decision tree learning [Balcan
and Sharma, 2024], semi-supervised learning [Balcan and Sharma, 2021], computational biol-
ogy [Balcan et al., 2021a], integer programming [Balcan et al., 2018a], AI search and plan-
ning [Sakaue and Oki, 2022], topics in scientific computing such as linear system solving [Kho-
dak et al., 2024] and numerical linear algebra [Bartlett et al., 2022], and various other computa-
tional problems. The main contribution of this chapter is to provide a sharp yet general analysis
of the performance of branch-and-cut tree search as a function of its parameters, with a focus on
cutting planes.

A related line of research provides algorithm configuration procedures with provable guar-
antees that are agnostic to the specific algorithm that is being configured [Kleinberg et al., 2017,
Weisz et al., 2018] and are particularly well-suited for algorithms with a finite number of pos-
sible configurations (though they can be applied to algorithms with infinite parameter spaces by
randomly sampling a finite set of configurations).

4.2.1 Work subsequent to our initial publications
The three papers [Balcan et al., 2021d, 2022b,c] covered in this chapter helped kindle an active
research effort on understanding machine learning for cutting plane configuration, both theoret-
ical and applied. On the applied front, learning to cut has become a significant research agenda.
Areas of study include imitation learning [Paulus et al., 2022], reinforcement learning [Mana
et al., 2024], learning to stop cut generation [Ling et al., 2024], learning to remove cuts [Puigde-
mont et al., 2024], learning to toggle cutting plane selectors [Li et al., 2023, Lawless et al.,

27

2024], graph neural networks [Deza et al., 2025], and learning for better cut separation [Guaje
et al., 2024, Becu et al., 2024]. The research in this chapter provides a theoretical backing for
all these works. The theory developed in this chapter has also been explicitly applied and ex-
tended to understand sample complexity of other tunable aspects of integer programming. For
example, Cheng and Basu [2024] show how to learn cut generating functions, which represent
a general abstraction for deriving valid cuts. Cheng et al. [2024], Cheng and Basu [2025] adapt
and generalize some of the results in Balcan et al. [2021d, 2022b] to cut-selection policies with
piecewise polynomial structure—specifically those parameterized by the weights of a neural
network—thus moving beyond the policies we study that are parameterized by mixture weights
of existing cut quality metrics (though piecewise polynomial structure is prevalent throughout
our structural analyses). Finally, Deza and Khalil [2023] provides a survey of machine learning
approaches for cutting planes (though only covering pre-2023 efforts).

Beyond integer programming, Sakaue and Oki [2024] study data-driven acceleration of LP
solvers. They note the thematic similarity of their analyses to those in Balcan et al. [2022c] (Sec-
tion 4.5). Finally, the tools from data-driven algorithm design used to prove our bounds, particu-
larly in Section 4.5 [Balcan et al., 2022c], have since been significantly extended as well. Balcan
et al. [2025a,b] show how to establish sample complexity bounds for algorithm configuration
settings that can have more complex structure than what we encounter here.

28

4.3 Sample Complexity of Learning Chvátal-Gomory Cuts
As our first main contribution, we bound the sample complexity of learning good cutting planes
that lead to small branch-and-cut trees. Fixing a family of cutting planes, these guarantees bound
the number of samples sufficient to ensure that for any sequence of cutting planes from the family,
its average performance over the samples is close to its expected performance. We measure
performance in terms of the size of the search tree branch-and-cut builds. Our guarantees in
this section apply to the parameterized family of Chvátal-Gomory (CG) cuts [Chvátal, 1973,
Gomory, 1958], one of the most canonical families of cutting planes.

The overriding challenge is that to provide guarantees, we must analyze how the tree size
changes as a function of the cut parameters. This is a sensitive function—slightly shifting the
parameters can cause the tree size to shift from constant to exponential in the number of variables.
Our key technical insight is that as the parameters vary, the entries of the cut (i.e., the vector α
and offset β of the cut α⊤x ≤ β) are multivariate polynomials of bounded degree. The number
of terms defining the polynomials is exponential in the number of parameters, but we show
that the polynomials can be embedded in a space with dimension sublinear in the number of
parameters. This insight allows us to better understand tree size as a function of the parameters.
We then leverage results by Balcan et al. [2021a] that show how to use structure exhibited by
dual functions (measuring an algorithm’s performance, such as its tree size, as a function of its
parameters) to derive sample complexity bounds.

Our second main contribution is a sample complexity bound for learning cut-selection poli-
cies, which allows branch-and-cut to adaptively select CG cuts as it solves the input IP. These
cut-selection policies assign a number of real-valued scores to a set of cutting planes and then
apply the cut that has the maximum weighted sum of scores. Tree size is a volatile function of
these weights, though we prove that it is piecewise constant, which allows us to prove our sample
complexity bound.

Chvátal-Gomory cuts The family of Chvátal-Gomory (CG) cuts [Chvátal, 1973, Gomory,
1958] are parameterized by vectors u ∈ Rm. The CG cut defined by u ∈ Rm is the hyperplane
⌊u⊤A⌋x ≤ ⌊u⊤b⌋, which is guaranteed to be valid. We restrict to u ∈ [0, 1)m. This is without
loss of generality, since the facets of P ∩ {x ∈ Rn : ⌊u⊤A⌋x ≤ ⌊u⊤b⌋ ∀u ∈ Rm} can be
described by the finitely many u ∈ [0, 1)m such that u⊤A ∈ Zn (Lemma 5.13 of Conforti et al.
[2014]).

4.3.1 Learning a single CG cut
We bound the pseudo-dimension of the set of functions fu for u ∈ [0, 1]m, where fu(c, A, b)
is the size of the tree B&C builds when it applies the CG cut defined by u at the root. To do
so, we take advantage of structure exhibited by the class of dual functions, each of which is
defined by a fixed IP (c, A, b) and measures tree size as a function of the parameters u. In other
words, each dual function f ∗

c,A,b : [0, 1]m → R is defined as f ∗
c,A,b(u) = fu(c, A, b). Our main

result in this section is a proof that the dual functions are well-structured (Lemma 4.3.2), which
then allows us to apply a result by Balcan et al. [2021a] to bound Pdim({fu : u ∈ [0, 1]m})
(Theorem 4.3.3). Proving that the dual functions are well-structured is challenging because they

29

are volatile: slightly perturbing u can cause the tree size to shift from constant to exponential in
n, as we prove in the following theorem.
Theorem 4.3.1. For any integer n, there exists an integer program (c, A, b) with two constraints
and n variables such that if 1

2
≤ u[1]− u[2] < n+1

2n
, then applying the CG cut defined by u at the

root causes B&C to terminate immediately. Meanwhile, if n+1
2n
≤ u[1]− u[2] < 1, then applying

the CG cut defined by u at the root causes B&C to build a tree of size at least 2(n−1)/2.

Proof. Without loss of generality, we assume that n is odd. We define the integer program

maximize 0
subject to 2x[1] + · · ·+ 2x[n] = n

x ∈ {0, 1}n,
(4.1)

which is infeasible because n is odd. Jeroslow [1974] proved that without the use of cutting
planes or heuristics, B&C will build a tree of size 2(n−1)/2 before it terminates. Rewriting
the equality constraint as 2x[1] + · · · + 2x[n] ≤ n and −2 (x[1] + · · ·+ x[n]) ≤ −n, a CG
cut defined by the vector u ∈ R2

≥0 will have the form ⌊2(u[1]− u[2])⌋ (x[1] + · · ·+ x[n]) ≤
⌊n (u[1]− u[2])⌋ .

Suppose that 1
2
≤ u[1]−u[2] < n+1

2n
. On the left-hand-side of the constraint, ⌊2(u[1]− u[2])⌋ =

1. On the right-hand-side of the constraint, n (u[1]− u[2]) < n+1
2

. Since n is odd, n+1
2

is an inte-
ger, which means that ⌊n (u[1]− u[2])⌋ ≤ n−1

2
. Therefore, the CG cut defined by u satisfies the

inequality x[1] + · · ·+ x[n] ≤ n−1
2

. The intersection of this halfspace with the feasible region of
the original integer program (Equation (4.9)) is empty, so applying this CG cut at the root will
cause B&C to terminate immediately.

Meanwhile, suppose that n+1
2n
≤ u[1]−u[2] < 1. Then it is still the case that ⌊2(u[1]− u[2])⌋ =

1. Also, n (u[1]− u[2]) ≥ n+1
2

, which means that ⌊n (u[1]− u[2])⌋ ≥ n+1
2

. Therefore, the CG
cut defined by u dominates the inequality x[1] + · · ·+ x[n] ≤ n+1

2
. The intersection of this half-

space with the feasible region of the original integer program is equal to the integer program’s
feasible region, so by Jeroslow’s result, applying this CG cut at the root will cause B&C to build
a tree of size at least 2(n−1)/2 before it terminates.

This theorem shows that the dual tree-size functions can be extremely sensitive to pertur-
bations in the CG cut parameters. However, we are able to prove that the dual functions are
piecewise-constant.
Lemma 4.3.2. For any IP (c, A, b), there are O(∥A∥1,1 + ∥b∥1 + n) hyperplanes that partition
[0, 1]m into regions where in any one region R, the dual function f ∗

c,A,b(u) is constant for all
u ∈ R.

Proof. Let a1, . . . ,an ∈ Rm be the columns of A. Let Ai = ∥ai∥1 and B = ∥b∥1, so for any
u ∈ [0, 1]m, ⌊u⊤ai⌋ ∈ [−Ai, Ai] and ⌊u⊤b⌋ ∈ [−B,B]. For each integer ki ∈ [−Ai, Ai], we
have ⌊u⊤ai⌋ = ki ⇐⇒ ki ≤ u⊤ai < ki + 1. There are

∑n
i=1 2Ai + 1 = O(∥A∥1,1 + n) such

halfspaces, plus an additional 2B + 1 halfspaces of the form kn+1 ≤ u⊤b < kn+1 + 1 for each
kn+1 ∈ {−B, . . . , B}. In any region R defined by the intersection of these halfspaces, the vector
(⌊u⊤a1⌋, . . . , ⌊u⊤an⌋, ⌊u⊤b⌋) is constant for all u ∈ R, and thus so is the resulting cut.

30

Combined with the main result of Balcan et al. [2021a], this lemma implies the following
bound.
Theorem 4.3.3. Let Fα,β denote the set of all functions fu for u ∈ [0, 1]m defined on the domain
of IPs (c, A, b) with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β. Then, Pdim(Fα,β) = O(m log(m(α+ β + n))).

This theorem implies that Õ(κ2m/ε2) samples are sufficient to ensure that with high proba-
bility, for every CG cut, the average size of the tree B&C builds upon applying the cutting plane
is within ϵ of the expected size of the tree it builds (the Õ notation suppresses logarithmic terms).

4.3.2 Learning a sequence of CG cuts
We now determine the sample complexity of making w sequential CG cuts at the root. The first
cut is defined by m parameters u1 ∈ [0, 1]m for each of the m constraints. Its application leads
to the addition of the row ⌊u⊤

1 A⌋x ≤ ⌊u⊤
1 b⌋ to the constraint matrix. The next cut is then be

defined by m + 1 parameters u2 ∈ [0, 1]m+1 since there are now m + 1 constraints. Continuing
in this fashion, the wth cut is be defined by m + w − 1 parameters uw ∈ [0, 1]m+w−1. Let
fu1,...,uw(c, A, b) be the size of the tree B&C builds when it applies the CG cut defined by u1,
then applies the CG cut defined by u2 to the new IP, and so on, all at the root of the search tree.

As in Section 4.3.1, we bound the pseudo-dimension of the functions fu1,...,uw by analyzing
the structure of the dual functions f ∗

c,A,b, which measure tree size as a function of the parameters
u1, . . . ,uw. Specifically, f ∗

c,A,b : [0, 1]m × · · · × [0, 1]m+w−1 → R, where f ∗
c,A,b(u1, . . . ,uw) =

fu1,...,uw(c, A, b). The analysis in this section is more complex because the sth cut (with s ∈
{2, . . . ,W}) depends not only on the parameters us but also on u1, . . . ,us−1. We prove that the
dual functions are again piecewise-constant, but in this case, the boundaries between pieces are
defined by multivariate polynomials rather than hyperplanes.
Lemma 4.3.4. For any IP (c, A, b), there are O(w2w ∥A∥1,1+2w ∥b∥1+nw) multivariate poly-
nomials in ≤ w2 +mw variables of degree ≤ w that partition [0, 1]m × · · · × [0, 1]m+w−1 into
regions where in any one region R, f ∗

c,A,b(u1, . . . ,uw) is constant for all (u1, . . . ,uw) ∈ R.

Proof. Let a1, . . . ,an ∈ Rm be the columns of A. For u1 ∈ [0, 1]m, . . . ,uw ∈ [0, 1]m+w−1,
define ã1

i ∈ [0, 1]m, . . . , ãw
i ∈ [0, 1]m+w−1 for each i = 1, . . . , n such that ãs

i is the ith column of
the constraint matrix after applying cuts u1, . . . ,us−1. More precisely, ã1

i ∈ [0, 1]m, . . . , ãw
i ∈

[0, 1]m+w−1 are defined recursively as

ã1
i = ai

ãs
i =

[
ãs−1
i

u⊤
s−1ã

s−1
i

]
for s = 2, . . . , w. Similarly, define b̃s to be the constraint vector after applying the first s − 1
cuts:

b̃1 = b

b̃s =

[
b̃s−1

u⊤
s−1b̃

s−1

]

31

for s = 2, . . . , w. (These vectors depend on the cut vectors, but we will suppress this dependence
for the sake of readability).

We prove this lemma by showing that there are O(w2w ∥A∥1,1+2w ∥b∥1+nw) hypersurfaces
determined by polynomials that partition [0, 1]m × · · · × [0, 1]m+w−1 into regions where in any
one region R, the w cuts

n∑
i=1

⌊u⊤
1 ã

1
i ⌋x[i] ≤ ⌊u⊤

1 b̃
1⌋

...
n∑

i=1

⌊u⊤
wã

w
i ⌋x[i] ≤ ⌊u⊤

w b̃
w⌋

are invariant across all (u1, . . . ,uw) ∈ R. To this end, let Ai = ∥ai∥1 and B = ∥b∥1. For each
s ∈ {1, . . . , w}, we claim that

⌊u⊤
s ã

s
i⌋ ∈

[
−2s−1Ai, 2

s−1Ai

]
.

We prove this by induction. The base case of s = 1 is immediate since ã1
i = ai and u ∈ [0, 1]m.

Suppose now that the claim holds for s. By the induction hypothesis,

∥∥ãs+1
i

∥∥
1
=

∥∥∥∥[ãs
i

u⊤
s ã

s
i

]∥∥∥∥
1

= ∥ãs
i∥1 +

∣∣u⊤
s ã

s
i

∣∣ ≤ 2 ∥ãs
i∥1 ≤ 2sAi,

so
⌊u⊤

s+1ã
s+1
i ⌋ ∈

[
−
∥∥ãs+1

i

∥∥
1
,
∥∥ãs+1

i

∥∥
1

]
⊆ [−2sAi, 2

sAi],

as desired. Now, for each integer ki ∈ [−2s−1Ai, 2
s−1Ai], we have

⌊u⊤
s ã

s
i⌋ = ki ⇐⇒ ki ≤ u⊤

s ã
s
i < ki + 1.

u⊤
s ã

s
i is a polynomial in variables u1[1], . . . ,u1[m], u2[1], . . . ,u2[m+1], . . . ,us[1], . . . ,us[m+

s− 1], for a total of ≤ ms+ s2 variables. Its degree is at most s. There are thus a total of

w∑
s=1

n∑
i=1

(2 · 2s−1Ai + 1) = O
(
w2w ∥A∥1,1 + nw

)
polynomials each of degree at most w plus an additional

∑w
s=1(2 · 2s−1B + 1) = O(2wB + w)

polynomials of degree at most w corresponding to the hypersurfaces of the form

kn+1 ≤ u⊤
s b̃

s < kn+1 + 1

for each s and each kn+1 ∈ {−2s−1B, . . . , 2s−1B}. This yields a total of O(w2w ∥A∥1,1 +

2w ∥b∥1 + nw) polynomials in ≤ mw + w2 variables of degree ≤ w.

We now use this structure to provide a pseudo-dimension bound.

32

Theorem 4.3.5. Let Fα,β denote the set of all functions fu1,...,uw for u1 ∈ [0, 1]m, . . . ,uw ∈
[0, 1]m+w−1 defined on the domain of integer programs (c, A, b) with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β.
Then, Pdim(Fα,β) = O(mw2 log(mw(α + β + n))).

Proof. The space of polynomials induced by the sth cut, that is, {k+u⊤
s ã

s
i : ai ∈ Rm, k ∈ R}, is

a vector space of dimension≤ 1+m. This is because for every j = 1, . . . ,m, all monomials that
contain a variable us[j] for some s have the same coefficient (equal to ai[j] for some 1 ≤ i ≤ n).
Explicit spanning sets are given by the following recursion. For each j = 1, . . . ,m define
ũ1[j], . . . , ũw[j] recursively as

ũ1[j] = u1[j]

ũs[j] = us[j] +
s−1∑
ℓ=1

us[m+ ℓ]ũℓ[j]

for s = 2, . . . , w. Then, {k+u⊤
s ã

s
i : ai ∈ Rm, k ∈ R} is contained in span{1, ũs[1], . . . , ũs[m]}.

It follows that

dim

(
w⋃

s=1

{k + u⊤
s ã

s
i : ai ∈ Rm, k ∈ R}

)
≤ 1 +mw.

The dual space thus also has dimension ≤ 1 + mw. The VC dimension of the family of 0/1
classifiers induced by a finite-dimensional vector space of functions is at most the dimension of
the vector space. Thus, the VC dimension of the set of classifiers induced by the dual space
is ≤ 1 + mw. Finally, applying the main result of Balcan et al. [2021a] in conjunction with
Lemma 4.3.4 gives the desired pseudo-dimension bound.

The sample complexity of learning W sequential cuts is thus Õ(κ2mw2/ϵ2).

4.3.3 Learning waves of simultaneous CG cuts

We now determine the sample complexity of making w sequential waves of cuts at the root, each
wave consisting of k simultaneous CG cuts. Given vectors u1

1, . . . ,u
k
1 ∈ [0, 1]m,u1

2, . . . ,u
k
2 ∈

[0, 1]m+k, . . . ,u1
w, . . . ,u

k
w ∈ [0, 1]m+k(w−1), let fu1

1,...,u
k
1 ,...,u

1
w,...,uk

w
(c, A, b) be the size of the tree

B&C builds when it applies the CG cuts defined by u1
1, . . . ,u

k
1, then applies the CG cuts defined

by u1
2, . . . ,u

k
2 to the new IP, and so on, all at the root of the search tree. The proof follows from

the observation that w waves of k simultaneous cuts can be viewed as making kw sequential cuts
with the restriction that cuts within each wave assign nonzero weight only to constraints from
previous waves.
Theorem 4.3.6. Let Fα,β be the set of all functions fu1

1,...,u
k
1 ,...,u

1
w,...,uk

w
for

u1
1, . . . ,u

k
1 ∈ [0, 1]m, . . . ,u1

w, . . . ,u
k
w ∈ [0, 1]m+k(w−1)

defined on the domain of integer programs (c, A, b) with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β. Then,
Pdim(Fα,β) = O(mk2w2 log(mkw(α + β + n))).

33

Proof. Applying cuts u1, . . . ,uk ∈ [0, 1]m simultaneously is equivalent to sequentially applying
the cuts

u1 ∈ [0, 1]m,

[
u2

0

]
∈ [0, 1]m+1,

u3

0
0

 ∈ [0, 1]m+2, . . . ,


uk

0
...
0

 ∈ [0, 1]m+k−1.

Thus, the set in question is a subset of
{
fu1,...,ukw

: u1 ∈ [0, 1]m, . . . ,ukw ∈ [0, 1]m+kw−1
}

and
has pseudo-dimension O(mk2w2 log(mkw(α + β + n))) by Theorem 4.3.5.

So, the sample complexity of learning W waves of k cuts is Õ(κ2mk2w2/ϵ2).

4.3.4 Learning cut selection policies
In this section, we bound the sample complexity of learning cut-selection policies at the root, that
is, functions that take as input an IP and output a candidate cut. Using scoring rules is a more
nuanced way of choosing cuts since it allows for the cut parameters to depend on the input IP.

Formally, let Im be the set of IPs with m constraints (the number of variables is always fixed
at n) and let Hm be the set of all hyperplanes in Rm. A scoring rule is a function score :
∪m(Hm × Im)→ R≥0. The real value score(α⊤x ≤ β, (c, A, b)) is a measure of the quality
of the cutting plane α⊤x ≤ β for the IP (c, A, b). We will see explicit examples of scoring rules
in the next chapter.

Suppose score1, . . . ,scored are d different scoring rules. We now bound the sample
complexity of learning a combination of these scoring rules that guarantee a low expected tree
size. Our high-level proof technique is the same as in the previous section: we establish that the
dual tree-size functions are piecewise structured, and then apply the general framework of Balcan
et al. [2021a] to obtain pseudo-dimension bounds.
Theorem 4.3.7. Let C be a set of cutting-plane parameters such that for every IP (c, A, b),
there is a decomposition of C into ≤ r regions such that the cuts generated by any two vectors
in the same region are the same. Let score1, . . . ,scored be d scoring rules. For µ ∈ Rd,
let fµ(c, A, b) be the size of the tree B&C builds when it chooses a cut from C to maximize
µ[1]score1(·, (c, A, b)) + · · · + µ[d]scored(·, (c, A, b)). Then, Pdim({fµ : µ ∈ Rd}) =
O(d log(rd)).

Proof. Fix an integer program (c, A, b). Let u1, . . . ,ur ∈ C be representative cut parameters for
each of the r regions. Consider the hyperplanes

∑d
i=1 µ[i]scorei(us) =

∑d
i=1 µ[i]scorei(ut)

for each s ̸= t ∈ {1, . . . , r} (suppressing the dependence on c, A, b). These O(r2) hyperplanes
partition Rd into regions such that as µ varies in a given region, the cut chosen from C is invariant.
The desired pseudo-dimension bound follows from the main result of Balcan et al. [2021a].

Theorem 4.3.7 can be directly instantiated with the class of CG cuts. Combining Lemma 4.3.2
with the basic combinatorial fact that k hyperplanes partition Rm into at most km regions, we
get that the pseudo-dimension of {fµ : µ ∈ Rd} defined on IPs with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β
is O(dm log(d(α + β + n))). Instantiating Theorem 4.3.7 with the set of all sequences of w

34

CG cuts requires the following extension of scoring rules to sequences of cutting planes. A se-
quential scoring rule is a function that takes as input an IP (c, A, b) and a sequence of cutting
planes h1, . . . , hw, where each cut lives in one higher dimension than the previous. It measures
the quality of this sequence of cutting planes when applied one after the other to the original IP.
Every scoring rule score can be naturally extended to a sequential scoring rule score defined
by score(h1, . . . , hw, (c

0, A0, b0)) =
∑w−1

i=0 score(hi+1, (c
i, Ai, bi)), where (ci, Ai, bi) is the

IP after applying cuts h1, . . . , hi−1.
Corollary 4.3.8. Let C = [0, 1]m × · · · × [0, 1]m+w−1 denote the set of possible sequences of w
Chvátal-Gomory cut parameters. Let score1, . . . ,scored : C × Im × · · · × Im+w−1 → R
be d sequential scoring rules and let fµ(c, A, b) be as in Theorem 4.3.7 for the class C. Then,
Pdim({fw

µ : µ ∈ Rd}) = O(dmw2 log(dw(α + β + n))).

Proof. In Lemma 4.3.4 and Theorem 4.3.5 we showed that there are O(w2wα + 2wβ + nw)
multivariate polynomials that belong to a family of polynomials G with VC(G∗) ≤ 1 + mw
(G∗ denotes the dual of G) that partition C into regions such that resulting sequence of cuts is
invariant in each region. By Claim 3.5 by Balcan et al. [2021a], the number of regions is

O(w2wα + 2wβ + nw)VC(G
∗) ≤ O(w2wα + 2wβ + nw)1+mw.

The corollary then follows from Theorem 4.3.7.

These results bound the sample complexity of learning cut-selection policies based on scoring
rules, which allow the cuts B&C that selects to depend on the input IP.

35

4.4 Sample Complexity Bounds for Branch-and-Cut and Gen-
eral Tree Search

Our main contribution in this section is a formalization of a general model of tree search (Algo-
rithm 2) that allows us to improve and generalize prior results on the sample complexity of tuning
branch-and-cut. In this model, the algorithm repeatedly chooses a leaf node of the search tree,
performs a series of actions (for example, a cutting plane to apply and a constraint to branch on),
and adds children to that leaf in the search tree. The algorithm will also fathom nodes when ap-
plicable. The node and action selection are governed by scoring rules, which assign a real-valued
score to each node and possible action. For example, a node-selection scoring rule might equal
the objective value of the node’s LP relaxation. We focus on general tree search with path-wise
scoring rules. At a high level, a score of a node or action is path-wise if its value only depends
on information contained along the path between the root and that node, as is often the case in
branch-and-cut. Many commonly used scoring rules are path-wise including the efficacy [Balas
et al., 1996a], objective parallelism [Achterberg, 2007], directed cutoff distance [Gamrath et al.,
2020], and integral support [Wesselmann and Stuhl, 2012] scoring rules, all used for cut selection
by SCIP [Gamrath et al., 2020], a leading open-source solver; the best-bound scoring rule for
node selection; and the linear, product, and most-fractional scoring rules for variable selection
using strong branching [Achterberg, 2007]. We show how this general model of tree search cap-
tures a wide array of branch-and-cut components, including node selection, general branching
constraint selection, and cutting plane selection, simultaneously. We also provide experimental
evidence that, in the case of cutting plane selection, the data-dependent tuning suggested by our
model can lead to dramatic reductions in the number of nodes expanded by branch-and-cut.

Our main structural result shows that for any IP, the tree search parameter space can be
partitioned into a finite number of regions such that in any one region, the resulting search tree
is fixed. This is in spite of the fact that the branch-and-cut search tree can be an extremely
unstable function of its parameters, with minuscule changes leading to exponentially better or
worse performance [Balcan et al., 2018a, 2021d]. By analyzing the complexity of this partition,
we prove our sample complexity bound. In particular, we relate the complexity of the partition
to the pseudo-dimension of the set of functions that measure the performance of branch-and-cut
as a function of the input IP.

We show that the pseudo-dimension is only polynomial in the depth of the tree (which is,
for example, at most the number of variables in the case of binary integer programming). By
contrast, we might naı̈vely expect the pseudo-dimension to grow linearly with the number of
arithmetic operations required to compute the branch-and-cut tree (as in Theorem 8.4 in Anthony
and Bartlett [1999]), which is exponential in the depth of the tree. In fact, our bound is expo-
nentially smaller than the pseudo-dimension bound of prior research by Balcan et al. [2021d],
which grows linearly with the total number of nodes in the tree. Their results apply to any type of
scoring rule, path-wise or otherwise. By taking advantage of the path-wise structure, we are able
to reason inductively over the depth of the tree, leading to our exponentially improved bound.
Our results recover those of Balcan et al. [2018a], who only studied path-wise scoring rules for
single-variable selection for branching. In contrast, we are able to handle many more of the
critical components of tree search: node selection, general branching constraint selection, and

36

cutting plane selection.

4.4.1 Main tree search model

In this section we present our general tree search model and situate it within the framework
of sample complexity. Balcan et al. [2021d], Vitercik [2021] studied the sample complexity of a
much more general formulation of a tunable search algorithm without any inherent tree structure.
Our formulation explicitly builds a tree.

Tree search starts with a root node. In each round of tree search, a leaf node Q is selected.
At this node, one of three things may occur: (1) Q is fathomed, meaning it is never visited again,
(2) some action is taken at Q, and then it is fathomed, or (3) some action is taken at Q, and
then some number of children nodes of Q are added to the tree. (For example, an action might
represent a decision about which variable to branch on.) This process repeats until the tree has
no unfathomed leaves. More formally, there are functions actions, children, and fathom
prescribing how the search proceeds. Given a partial tree T and a leaf Q of T , actions(T , Q)
outputs a set of actions available at Q. Given a partial tree T , a leaf Q of T , and an action
A ∈ actions(T , Q), fathom(T , Q,A) ∈ {true,false} is a Boolean function used to
determine when to fathom a leaf Q of T given that action A ∈ actions(T , Q)∪ {None} was
taken at Q, and children(T , Q,A) outputs a (potentially empty) list of nodes representing
the children of Q to be added to the search tree given that action A was taken at Q. Finally,
nscore(T , Q) is a node-selection score that outputs a real-valued score for each leaf of T , and
ascore(T , Q,A) is an action-selection score that outputs a real-valued score for each action
A ∈ actions(T , Q). These scores are heuristics that are meant to indicate the quality of
exploring a node or performing an action.

Many aspects of B&C are governed by scoring rules [Achterberg, 2007]. For example,
commonly used scoring rules for cutting plance selection include efficacy [Balas et al., 1996a],
which is the perpendicular distance from the current LP solution to the cutting plane; paral-
lelism [Achterberg, 2007], which measures the angle between the objective and the normal vec-
tor to the cutting plane; and directed cutoff [Gamrath et al., 2020], which is the distance from
the current LP solution to the cutting plane along the direction of the line segment connecting
the LP solution to the current best incumbent integer solution For node selection, under the com-
monly used best-first node selection policy, nscore(T , Q) equals the objective value of the LP
relaxation of the IP represented by the node Q. Finally, for variable selection, popular scoring
rules include a maximum change in LP objective value after branching on the variable (where
the maximum is taken over the two resulting children), the minimum change in the LP objective
value, linear combinations of these two values, and the product of these two values [Achterberg,
2007]. Algorithm 2 is a formal description of tree search using these functions.

The key condition that enables us to derive stronger sample complexity bounds compared to
prior research is the notion of a path-wise function, which was also used in prior research but
only in the context of variable selection Balcan et al. [2018a].
Definition 4.4.1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all T
and Q ∈ T , f(T , Q) = f(TQ, Q), where TQ is the path from the root of T to Q. A function g
on tree-leaf-action triples is path-wise if for all A, fA(T , Q) := g(T , Q,A) is path-wise.

37

Algorithm 2 Tree search
Input: Root node Q, depth limit ∆

1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q,None) then
5: Fathom Q.
6: else
7: Select an action A ∈ actions(T , Q) that maximizes ascore(T , Q,A).
8: if fathom(T , Q,A) then
9: Fathom Q.

10: else if children(T , Q,A) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q,A) to T as children of Q.

We assume that actions, ascore, nscore and children are path-wise, though fathom
is not necessarily path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often
functions of the LP relaxation of the IP represented by a given node, and these scoring rules are
path-wise. Specific examples include the efficacy, objective parallelism, directed cutoff distance,
and integral support scoring rules used for cut selection; the best-bound scoring rule for node
selection; and the linear, product, and most-fractional scoring rules for variable selection using
strong branching. A point of clarification: the pathwise assumption is with respect to the numer-
ical scores assigned to actions/nodes. The actual act of, for example, node selection, can depend
on the entire tree. For example, consider the best-bound node selection rule in branch-and-cut,
which chooses the node with the best LP estimate. Here, the scoring rule, which is the LP objec-
tive value itself, is pathwise, but ultimately the node that is selected depends on the LP bounds at
every unexplored node of the tree. This is fine for our analysis. Similarly, the decision to fathom
a node based on LP bounds is a decision that depends on the entire tree built so far, which is also
captured by our analysis.

No one scoring rule is optimal across all application domains, and prior research on variable
selection has shown that it can be advantageous to adapt the scoring rule to the application
domain at hand Balcan et al. [2018a]. To this end, Algorithm 2 can be tuned by two parameters
µ ∈ [0, 1] and λ ∈ [0, 1] that control action selection and node selection, respectively. Given two
fixed path-wise action-selection scores ascore1 and ascore2, we define a new score by

ascoreµ(T , Q) = µ · ascore1(T , Q) + (1− µ) · ascore2(T , Q).

Similarly, given two path-wise node-selection scores nscore1 and nscore2, we define

nscoreλ(T , Q,A) = λ · nscore1(T , Q,A) + (1− λ) · nscore2(T , Q,A).

Then, if nscoreλ and ascoreµ are used as the scores in Algorithm 2, we can view the be-
havior of tree search as a function of µ and λ. The choice to use a convex combination of

38

scores is not new: prior research has shown that this idea can lead to dramatic improvements
in the case of single-variable branching Balcan et al. [2018a]. Furthermore, the leading open
source solver SCIP uses a hard-coded weighted sum of scoring rules to select cutting planes.
More broadly, interpolating between two scores is a commonly-studied modeling choice in other
machine learning topics such as clustering Balcan et al. [2017].

Finally, we assume there exists b, k ∈ N such that |actions(T , Q)| ≤ b for any Q ∈ T ,
and |children(T , Q,A)| ≤ k for all Q,A.

4.4.2 Problem formulation

Let Q denote the domain of possible input root nodes Q to Algorithm 2 (for example, the set
of all IPs with n variables and m constraints). As is common in prior research on algorithm
configuration [Horvitz et al., 2001, Xu et al., 2008, 2011, Hutter et al., 2009, Leyton-Brown et al.,
2009, Kadioglu et al., 2010, Sandholm, 2013], we assume there is some unknown distribution D
overQ. We are interested in bounding the sample complexity of classes of real valued functions
F = {f : Q → R}. In the context of Algorithm 2, we study families of tree-constant cost
functions. A cost function cost : Q → R is tree constant if cost(Q) only depends on the
tree built by Algorithm 2 on input Q (an example is tree size). Let costµ,λ(Q) denote this cost
when Algorithm 2 is run using the scores ascoreµ = µ · ascore1 + (1 − µ) · ascore2 and
nscoreλ = λ·nscore1+(1−λ)·nscore2. We study the sample complexity ofF = {costµ,λ :
µ, λ ∈ [0, 1]}. We emphasize that we primarily interpret tree-constant functions as proxies for
run-time/memory. In the context of integer programming, tree size is one such measure. A
strength of these guarantees is that they apply no matter how the parameters are tuned: optimally
or suboptimally, manually or automatically. For any configuration, these guarantees bound the
difference between average performance over the training set and expected future performance
on unseen IPs.

4.4.3 Generalization guarantees for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property: the
behavior of Algorithm 2 is piecewise constant as a function of the node-selection score parame-
ter λ and the action-selection score parameter µ. We give a high-level outline of our approach.
We first assume that the conditional checks fathom(T , Q, ·) = true (lines 4 and 8) are sup-
pressed. Let A′ denote Algorithm 2 without these checks (so A′ fathoms a node if and only if
the depth limit is reached or if the node has no children). The behavior of A′ as a function of µ
and λ can be shown to be piecewise constant using the same argument as in Claim 3.4 of Balcan
et al. [2018a]. Given this, our first main technical contribution (Lemma 4.4.2) is a generaliza-
tion of Claim 3.5 of Balcan et al. [2018a] that relates the behavior of A′ to Algorithm 2. The
argument in Balcan et al. [2018a] is specific to branching, but we are able to prove our result
in a much more general setting. Our second main technical contribution (Lemma 4.4.4) is to
establish piecewise structure when the node-selection score is controlled by λ ∈ [0, 1]. The main
reason for this auxiliary step of analyzing A′ is due to the fact that fathom is not necessarily a
path-wise function, and can depend on the state of the entire tree.

39

Lemma 4.4.2. Fix µ ∈ [0, 1]. Let T and T ′ be the trees built by Algorithm 2 andA′, respectively,
using the action-selection score µ ·ascore1+(1−µ) ·ascore2. Let Q be any node in T , and
let TQ be the path from the root of T to Q. Then, TQ is a rooted subtree of T ′, no matter what
node selection policy is used.

Proof. Let t denote the length of the path TQ. Let TQ be comprised of the sequence of nodes
(Q1, . . . , Qt) such that Q1 is the root of T , Qt = Q, and for each τ , Qτ+1 ∈ children(TQτ , Qτ , Aτ)
where Aτ ∈ actions(TQτ , Qτ) is the action selected by Algorithm 2 at node Qτ . We show
that (Q1, . . . , Qt) is a rooted path in T ′ as well.

Suppose for the sake of contradiction that this is not the case. Let τ ∈ {2, . . . , t} be the
minimal index such that (Q1, . . . , Qτ−1) is a rooted path in T ′, but there is no edge in T ′ from
Qτ−1 to node Qτ . There are two possible cases:

Case 1. Qτ−1 was fathomed by A′. This case is trivially not possible since whenever A′

fathoms a node, so does Algorithm 2 (recallA′ was defined by suppressing fathoming conditions
of Algorithm 2).

Case 2. Qτ /∈ children(T ′, Qτ−1, A
′
τ−1) where A′

τ−1 is the action taken by A′ at node
Qτ−1. In this case, if children(T ′, Qτ−1, A

′
τ−1) = ∅, then Qτ−1 would be fathomed by A′,

which cannot happen by the first case. Otherwise, if children(T ′, Qτ−1, A
′
τ−1) ̸= ∅, we show

that we arrive at a contradiction due to the fact that the scoring rules, action-set functions, and
children functions are all path-wise. Let A′

τ−1 denote the action taken by A′ at Qτ−1, and let
Aτ−1 denote the action taken by Algorithm 2 at Qτ−1. Since actions is path-wise,

actions(T , Qτ−1) = actions(TQτ−1 , Qτ−1) = actions(T ′, Qτ−1).

Since ascore1 and ascore2 are path-wise, we have

µ · ascore1(T ,Qτ−1, A) + (1− µ) · ascore2(T , Qτ−1, A)

= µ · ascore1(TQτ−1 , Qτ−1, A) + (1− µ) · ascore2(TQτ−1 , Qτ−1, A)

= µ · ascore1(T ′, Qτ−1, A) + (1− µ) · ascore2(T ′, Qτ−1, A).

for all actions A ∈ actions(TQτ−1 , Qτ−1). Therefore Algorithm 2 and A′ choose the same
action at node Qt−1, that is, Aτ−1 = A′

τ−1. Finally, since children is path-wise, we have

children(T , Qτ−1, Aτ−1) = children(TQτ−1 , Qτ−1, Aτ−1) = children(T ′, Qτ−1, Aτ−1).

Since Qτ ∈ children(T , Qτ−1, Aτ−1), this is a contradiction, which completes the proof.

We use the following generalization of Claim 3.4 of Balcan et al. [2018a] that shows the be-
havior of A′ is piecewise constant. While their argument only applies to single-variable branch-
ing, our key insight is that the same reasoning can be readily adapted to handle any actions
(including general branching constraints and cutting planes). The structure of our proof is identi-
cal, but is modified to work in our more general setting. This style of analysis is similar in spirit
to Megiddo [1979].
Lemma 4.4.3. Let ascore1 and ascore2 be two path-wise action-selection scores. Fix the
input root node Q. There are T ≤ k∆(∆−1)/2b∆ subintervals I1, . . . , IT partitioning [0, 1] where
for any subinterval It, the action-selection score µ · ascore1 + (1 − µ) · ascore2 results in
the same tree built by A′ for all µ ∈ It, no matter what node selection policy is used.

40

Proof of Lemma 4.4.3. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the
restriction of T to nodes of depth at most i. Let ascoreµ = µ ·ascore1+(1−µ) ·ascore2.
We prove the lemma by induction on i. In particular, we show that for each i ∈ [∆], there are
ki(i−1)/2bi subintervals partitioning [0, 1] such that T [i] is invariant over all µ within any given
subinterval. Since T [∆] = T , this implies the lemma statement. The base case of i = 1 is trivial
since T [1] consists of only the root.

Now, suppose the statement holds for some i ∈ {1, . . . ,∆ − 1}. That is, there are T ≤
ki(i−1)/2bi disjoint intervals I1 ∪ · · · ∪ IT = [0, 1] such that T [i] is invariant over all µ within
any given subinterval (our inductive hypothesis). Fix one of these subintervals It. We subdivide
It into subintervals such that T [i + 1] is invariant within each one of these smaller subintervals.
Let Q be any leaf of T [i], and for µ ∈ It let Tµ denote the state of the tree using ascoreµ

at the point that Q is selected. Since i < ∆, Q is not fathomed at line 4, regardless of µ.
Next, since actions is path-wise, the actions available at Q depend only on the path TQ from
the root of T to Q, which, by the inductive hypothesis, is invariant over all µ ∈ It. That is,
actions(Tµ, Q) = actions(TQ, Q) for all µ ∈ It. Then, ascoreµ with parameter µ will
select action A ∈ actions(TQ, Q) if and only if

A = argmax
A0∈actions(TQ,Q)

µ · ascore1(Tµ, Q,A0) + (1− µ) · ascore2(Tµ, Q,A0)

= argmax
A0∈actions(TQ,Q)

µ · ascore1(TQ, Q,A0) + (1− µ) · ascore2(TQ, Q,A0),

where the second equality follows from the fact that ascore1 and ascore2 are path-wise.
Thus, for a fixed A0, ascoreµ is linear in µ, so for each A0 there is at most one subinterval
of [0, 1] such that for all µ in that subinterval, A0 maximizes ascoreµ. Thus, each leaf of
T [i] contributes at most b subintervals such that for µ within a given subinterval, the action
selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of
at most kib subintervals. Now, since the action A selected at each leaf Q of T [i] is invariant, the
set of children children(Tµ, Q,A) = children(TQ, Q,A) of Q added to the tree is also
invariant, using the fact that children is path-wise. This shows that within every subinterval,
T [i + 1] is invariant. The total number of subintervals is, by the induction hypothesis, at most
ki(i−1)/2bi · kib = k(i+1)i/2bi+1, as desired.

We now prove our main structural result for Algorithm 2.
Lemma 4.4.4. Let ascore1 and ascore2 be path-wise action-selection scores and let nscore1

and nscore2 be path-wise node-selection scores. Fix the input root node Q. There are T ≤
k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such that for any rectangle Rt, the node-selection score
λ·nscore1+(1−λ)·nscore2 and the action-selection score µ·ascore1+(1−µ)·ascore2

result in the same tree built by Algorithm 2 for all (µ, λ) ∈ Rt.

Proof. By Lemma 4.4.3, there is a partition of [0, 1] into subintervals I1∪· · ·∪IT such that for all
µ within a given subinterval, the tree built by A′ is invariant (independent of the node-selection
score). Fix a subinterval It of this partition. Let T denote the tree built by Algorithm 2. For each
node Q ∈ T , let TQ denote the path from the root to Q in T . Since nscore1 is path-wise, for
any tree T ′ containing TQ as a rooted path, nscore1(T ′, Q) = nscore1(TQ, Q). The same

41

holds for nscore2. For every pair of nodes Q1, Q2 ∈ T , let λ(Q1, Q2) ∈ [0, 1] denote the
unique solution to

λ · nscore1(TQ1 , Q1) + (1− λ) · nscore2(TQ1 , Q1)

= λ · nscore1(TQ2 , Q2) + (1− λ) · nscore2(TQ2 , Q2),

if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set λ(Q1, Q2) = 0).
The thresholds λ(Q1, Q2) for every pair of nodes Q1, Q2 ∈ T partition [0, 1] into subintervals
such that for all λ within a given subinterval, the total order over the nodes of T induced by
nscoreλ is invariant. In particular, this means that the node selected by each iteration of Algo-
rithm 2 is invariant. Let J1 ∪ · · · ∪ JS denote these subintervals induced by the thresholds over
all subinterval It ∈ {I1, . . . , IT} established in Lemma 4.4.3.

We now show that this implies that the tree built by Algorithm 2 is invariant over all (µ, λ)
within a given rectangle It × Js. Fix some rectangle It × Js. We proceed by induction on the
iterations (of the while loop) of Algorithm 2. For the base case (iteration 0, before entering the
while loop), the tree consists of only the root, so the hypothesis trivially holds. Now, suppose
the statement holds up until the jth iteration, for some j. We analyze each line of Algorithm 2
to show that the behavior of the j + 1st iteration is independent of (µ, λ) ∈ It × Js. First,
since Js determines the node selected at each iteration (as argued above), the node selected on
the j + 1st iteration (line 3) is fixed, independent of (µ, λ) ∈ It × Js. Denote this node by
Q. Thus, whether depth(Q) = ∆ is independent of (µ, λ) ∈ It × Js, and similarly whether
fathom(T , Q,None) = true is independent of (µ, λ) ∈ It × Js (line 4). This implies that
whether or not Q is fathomed at this stage is independent of (µ, λ) ∈ It×Js. If Q was fathomed,
we are done. Otherwise, we argue that the action selected at line 7 is invariant over (µ, λ) ∈
It × Js. By Lemma 4.4.3, A′ builds the same tree for all µ ∈ It. Let TQ denote the path from
the root to Q in this tree. By Lemma 4.4.2, TQ is the path from the root to Q in the tree built by
Algorithm 2 as well. The action selected at Q by A′ is invariant over µ ∈ It (by Lemma 4.4.3).
Therefore, since actions, ascore1, and ascore2 are path-wise, the action A selected by
Algorithm 2 at Q is invariant over µ ∈ It. Finally, fathom(T , Q,A) and children(T , Q,A)
are completely determined, so the execution of the remaining conditional statement (line 8 to
line 13) is invariant over (µ, λ) ∈ It × Js. Thus, the entire iteration of Algorithm 2 is invariant
over (µ, λ) ∈ It × Js, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0, 1]2. For each interval It
in the partition established in Lemma 4.4.3, we obtained a partition of It × [0, 1] into rectangles
induced by at most

(|T |
2

)
thresholds, which consists of at most at most

1 +

(
(k∆+1 − 1)/(k − 1)

2

)
≤ 1 +

(
k∆+1 − 1

k − 1

)2

≤ k5∆

subintervals. Accounting for every interval It ∈ {I1, . . . , IT} in the partition from Lemma 4.4.3,
we get a total of Tk5∆ ≤ k∆(9+∆)/2b∆ rectangles, as desired.

We now derive generalization guarantees for the collection F = {costµ,λ : (µ, λ) ∈ [0, 1]2}
where cost is any tree-constant function, such as tree size. We do this by bounding the pseudo-
dimension of F .

42

Algorithm 3 Tree search with multiple actions
Input: Root node Q, depth limit ∆

1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q,None, . . . ,None) then
5: Fathom Q.
6: else
7: For i = 1, . . . , d, take Ai ∈ actionsi(T , Q) that maximizes ascorei(T , Q,Ai).
8: if fathom(T , Q,A1, . . . , Ad) then
9: Fathom Q.

10: else if children(T , Q,A1, . . . , Ad) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q,A1, . . . , Ad) to T as children of Q.

Theorem 4.4.5. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the cost of
the tree built by Algorithm 2 on input root node Q using action-selection score parameterized by
µ and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) = O(∆2 log k+∆ log b).

Proof. By Lemma 4.4.4, there are at most T = k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such
that for a fixed input node Q, costµ,λ(Q) is constant over each rectangle as a function of µ, λ.
These T rectangles can be defined by T thresholds on [0, 1] corresponding to µ and T thresholds
on [0, 1] corresponding to λ. Thus, the T rectangles can be identified by T 2 = k2∆(9+∆)b2∆ linear
separators in R2. The VC dimension of linear separators in R2 is O(1). The pseudo-dimension
of the set of constant functions is also O(1). Plugging these quantities into the main theorem
of Balcan et al. [2021a] yields the theorem statement.

Multiple actions Theorem 10.2.4 can be easily generalized to the case where there are multiple
actions of different types taken at each node of Algorithm 2. Specifically, there are now d path-
wise action-set functions actions1, . . . ,actionsd, and at line 7 of Algorithm 2 we take one
action of each type, that is, we select action A1 ∈ actions1(T , Q), A2 ∈ actions2(T , Q),
and so on. The functions fathom and children then depend on all d actions taken at node
Q. We assume that there are two scoring rules ascorei

1 and ascorei
2 for each action type

i = 1, . . . , d. Algorithm 2 can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of
parameters controlling each action, so the ith action is selected to maximize µi · ascorei

1 +
(1− µi) · ascorei

2. Then, as long as d = O(1), we get the same pseudo-dimension bound. We
assume b is a uniform upper bound on the size of actionsi for any i.

Let actions1, . . . ,actionsd be path-wise. The multi-action version of Algorithm 2 is
given by Algorithm 3.

There are two scoring rules ascorei
1 and ascorei

2 for each action type i ∈ [d]. Algorithm 3
can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of parameters controlling each
action: the ith action is selected to maximize µi · ascorei

1 + (1 − µi) · ascorei
2. As before,

43

we assume there are b, k ∈ N such that |actionsi(T , Q)| ≤ b for any i and any Q ∈ T , and
|children(T , Q,A1, . . . , Ad)| ≤ k for all Q,A1, . . . , Ad.

Let A′, as in the single-action setting, be Algorithm 3 with the evaluations of fathom on
line 3 and line 3 suppressed. Then, we may prove a slight generalization of lemma 4.4.3.
Lemma 4.4.6. Let ascorei

1 and ascorei
2 be two path-wise action-selection scores, for each

i ∈ {1, . . . , d}. Fix the input root node Q. There are T ≤ kd∆(∆−1)/2bd∆ boxes of the form
Rt = I1 × · · · × Id partitioning [0, 1]d where for any box Rt, the action-selection scores µi ·
ascorei

1 + (1 − µi) · ascorei
2 results in the same tree built by A′ for all µ ∈ Rt, no matter

what node selection policy is used.

Proof. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the restriction of T to
nodes of depth at most i. Let ascorei

µi
= µi · ascorei

1 + (1− µi) · ascorei
2. We prove the

lemma by induction on i. In particular, we show that for each i ∈ [∆], there are kdi(i−1)/2bdi boxes
partitioning [0, 1]d such that T [i] is invariant over all µ within any given box. Since T [∆] = T ,
this implies the lemma statement. The base case of i = 1 is trivial since T [1] consists of only the
root, regardless of µ ∈ [0, 1]d.

Now, suppose the statement holds for some i ∈ {1, . . . ,∆ − 1}. That is, there are T ≤
kdi(i−1)/2bdi disjoint boxes R1 ∪ · · · ∪ IR = [0, 1]d such that T [i] is invariant over all µ within
any given boxes (our inductive hypothesis). Fix one of these boxes Rt. We subdivide Rt into
sub-boxes such that T [i + 1] is invariant within each one of these smaller boxes. Let Q be any
leaf of T [i], and for µ ∈ Rt let Tµ denote the state of the tree using ascorei

µi
for each i at the

point that Q is selected. Since i < ∆, Q is not fathomed at line 4, regardless of µ. Next, since
actionsi is path-wise for each i, the actions available at Q depend only on the path TQ from
the root of T to Q, which, by the inductive hypothesis, is invariant over all µ ∈ Rt. That is, for
all i actionsi(Tµ, Q) = actionsi(TQ, Q) for all µ ∈ Rt. Then, ascorei

µi
will select action

Ai ∈ actionsi(TQ, Q) if and only if

Ai = argmax
A0∈actionsi(TQ,Q)

µ · ascorei
1(Tµ, Q,A0) + (1− µi) · ascorei

2(Tµ, Q,A0)

= argmax
A0∈actionsi(TQ,Q)

µi · ascorei
1(TQ, Q,A0) + (1− µi) · ascorei

2(TQ, Q,A0),

where the second equality follows from the fact that ascorei
1 and ascorei

2 are path-wise.
Thus, for a fixed A0, ascorei

µi
is linear in µi, so for each A0 there is at most one subinterval of

[0, 1] such that for all µi in that subinterval, A0 maximizes ascorei
µi

. Thus, each leaf of T [i]
contributes at most b subintervals such that for µi within a given subinterval, the action of type
i selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of
at most kib subintervals. Writing Rt = I1 × · · · Id, we have established that for each i, there are
kib subintervals partitioning Ii into subintervals such that as µi varies over each subinterval, the
action of type i selected at every leaf of T [i] is invariant. These subintervals partition Rt into at
most (kib)d boxes. As before, since the actions selected at each leaf Q of T [i] are invariant, the
set of children children(Tµ, Q,A1, . . . , Ad) = children(TQ, Q,A1, . . . , Ad) of Q added
to the tree is also invariant, using the fact that children is path-wise. Therefore, within every
sub-box of Rt, T [i + 1] is invariant. The total number of boxes over each possible Rt is, by the
induction hypothesis, at most kdi(i−1)/2bdi · kdibd = kd(i+1)i/2bd(i+1).

44

The proof of Lemma 4.4.2 is identical in the multi-action setting. The proof of Lemma 4.4.4
is also identical: here, we fix a box R in the partition established in Lemma 4.4.6, and get an
identical partition of R × [0, 1] such that the behavior of Algorithm 3 is invariant as λ varies in
each subinterval of [0, 1]. The number of boxes in the final partition of [0, 1]d+1 is kd∆(∆−1)/2bd∆ ·
k5∆ ≤ kd∆(9+∆)bd∆. Our main pseudo-dimension bound for the multi-action setting follows from
the same argument that exploits the framework of Balcan et al. [2021a].
Theorem 4.4.7. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the cost
of the tree built by Algorithm 2 on input root node Q using action-selection scores parame-
terized by µ ∈ Rd, where d = O(1), and node-selection score parameterized by λ. Then,
Pdim({costµ,λ}) = O(d∆2 log k + d∆ log b).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({costµ,λ}) = O(∆2 log k +∆ log b).

4.4.4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{c⊤x : Ax ≤ b,x ≥
0,x ∈ Zn} where c ∈ Rn, A ∈ Zm×n, b ∈ Zm. The function fathom(T , Q,A) outputs true
if after having taken action A the LP relaxation at Q is integral, infeasible, or worse than the
best integral solution found so far in T . The function children(T , Q,A) outputs the two
subproblems generated by the branching procedure on the IP at Q after having taken action A.
For simplicity we refer only to IPs, but everything in our discussion applies to mixed IPs as well.
In our model of tree search, node selection is controlled by λ. Cutting planes and branching are
types of actions and controlled by µ.

Branching

In this section, we provide guarantees for branching. Throughout this section we assume ∆ =
O(n), as is the case with single-variable branching.

Multivariable branching constraints It is well known that allowing for more general genera-
tion of branching constraints can result in smaller B&C trees. Gilpin and Sandholm [2011] stud-
ied multivariable branches of the form

∑
i∈S x[i] ≤

⌊∑
i∈S x

∗
LP[i]

⌋
,
∑

i∈S x[i] ≥
⌈∑

i∈S x
∗
LP[i]

⌉
where S is a subset of the integer variables such that

∑
i∈S x

∗
LP[i] /∈ Z. Here, actions(T , Q) =

2[n], so, Pdim({costµ,λ}) = O(n2). So our sample complexity bound for multivariable branch-
ing constraints is, surprisingly, only a constant factor worse than the bound for single-variable
branching constraints.

We give a simple example where B&C using only single variable branches builds a tree
of exponential size, while a single branch on the entire set of variables at the root yields two
infeasible subproblems (and a B&C tree of size 3).
Theorem 4.4.8. For any n, there is an IP with two constraints and n variables such that with only
single variable branches, B&C builds a tree of size 2(n−1)/2, while with a suitable multivariable
branch, B&C builds a tree of size three.

45

Proof. Let n be an odd positive integer. Consider the infeasible IP max{
∑n

i=1 x[i] : 2
∑n

i=1 x[i] =
n,x ∈ {0, 1}n}. Jeroslow [1974] proved that with only single-variable branches, B&C builds a
tree with 2(n−1)/2 nodes to determine infeasibility. However, with a suitable multivariable branch,
B&C will build a tree of constant size. The optimal solution to the LP relaxation of the IP is at-
tained when all variables are set to 1/2. A multivariable branch on all n variables produces
the two subproblems with constraints

∑n
i=1 x[i] ≤ ⌊n/2⌋ and

∑n
i=1 x[i] ≥ ⌈n/2⌉, respectively.

Since n is odd, ⌊n/2⌋ < n/2 and ⌈n/2⌉ > n/2, so the LP relaxations of both subproblems are
infeasible. Thus, B&C builds a tree with three nodes.

Yang et al. [2021] provide more examples of situations where multivariable branching yields
dramatic improvements in tree size over single variable branching. They also perform a com-
putational evaluation of a few different strategies for generating multivariable branching con-
straints. Yang et al. [2020] explore gradient-boosting for learning to mimic strong branching for
multiple variables.

Branching on general disjunctions Branching constraints can be even more general than mul-
tivariable branches. Given any integer vector π ∈ Zn and any integer π0 ∈ Z (jointly referred
to as a disjunction), the constraints π⊤x ≤ π0 or π⊤x ≥ π0 + 1 represent a valid partition
of the feasible region into subproblems. Owen and Mehrotra [2001] ran the first experiments
demonstrating that branching on general disjunctions can lead to significantly smaller tree sizes.
Subsequent works have posed different heuristics to select disjunctions to branch on [Fischetti
and Lodi, 2002, Mahajan and Ralphs, 2009].

In practice it is known that additional IP constraints should not have coefficients that are too
large. If C is a bound on the magnitude of the coefficient of any disjunction, then actions(T , Q) =
{−C, . . . , C}n+1, so Pdim({costµ,λ}) = O(n2 logC). Karamanov and Cornuéjols [2011] con-
duct a computational evaluation of disjunctions derived from Gomory mixed-integer cuts. In this
setting, actions(T , Q) is the set of m or fewer disjunctions corresponding to the m or fewer
Gomory mixed-integer cuts derived from the simplex tableau from solving the LP relaxation of
Q. In this case, Pdim({costµ,λ}) = O(n2 + n logm).

Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the IP at
any stage of B&C. Here, actions(T , Q) is any set of cutting planes derived solely using the
path from the root to the IP at Q. Examples include the set of Chvátal-Gomory (CG) derived
from the simplex tableau [Gomory, 1958], and various combinatorial families of cutting planes
such as clique cuts, odd-hole cuts, and cover cuts. The set actions(T , Q) can also consist
of sequences of cutting planes, representing adding several cutting planes to the IP in waves.
For example, the set of all sequences of w CG cuts generated from the simplex tableau for an
IP with m constraints has size at most mw (regardless of whether the LP is resolved after each
cut). The number of such cutting planes provided by the LP tableau at any node in the tree
is at most O(m + nw) (the original IP has m constraints, and after at most n branches there
are an additional n branching constraints and at most nw cutting planes), which means that
|actions(T , Q)| ≤ O(m+ nw)w. Thus, Pdim({costµ,λ}) = O(n2 + nw log(m+ nw)).

46

(a) µ · E+ (1− µ) · P (b) µ · E+ (1− µ) · D

(c) µ · D+ (1− µ) · P

Figure 4.1: Chvátal distribution with 35 items and 2 knapsacks.

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al.
[2021d] proved that given an IP with feasible region {x ∈ Zn : Ax ≤ b,x ≥ 0}, even though
there are infinitely many CG cut parameters, there are effectively only O(w2w ∥A∥1,1+2w ∥b∥1+
nw)1+mw distinct sequences of cutting planes that w CG cut parameters can produce. At any node
in the B&C tree, the number of constraints is at most O(m+nw). So, on the domain of IPs with
∥A∥1,1 ≤ α and ∥b∥1 ≤ β, |actions(T , Q)| ≤ O(w2wα + 2wβ + nw)1+w·O(m+nw). Thus,
Pdim({costµ,λ}) = O(n2w3m log(α + β + n)).

Experiments on cover cuts for the multiple knapsack problem

In this section, we demonstrate via experiments that tuning a convex combination of scoring
rules to select cuts can lead to dramatically smaller branch-and-cut trees when done in a data-
dependent manner. We study the classical NP-hard multiple knapsack problem: given a set N of
items where each item i ∈ N has a value pi ≥ 0 and a weight wi ≥ 0, and a set K of knapsacks
where each knapsack k ∈ K has a capacity Wk ≥ 0, the goal is to find a feasible packing of
the items into the knapsacks of maximum value. We assume, without loss of generality, that the
items are labeled in descending order of weight, that is, w1 ≥ w2 ≥ · · · ≥ w|N |. This problem

47

(a) µ · E+ (1− µ) · P (b) µ · E+ (1− µ) · D

(c) µ · D+ (1− µ) · P

Figure 4.2: Chvátal distribution with 35 items and 3 knapsacks.

can be formulated as the following binary IP:

maximize
∑

i∈N
∑

k∈K pixk,i

subject to
∑

i∈N wixk,i ≤ Wk ∀ k ∈ K∑
k∈K xk,i ≤ 1 ∀ i ∈ N

xk,i ∈ {0, 1} ∀ i ∈ N, k ∈ K

Recall from Chapter 3 that a subset C ⊆ N of items is called a cover for knapsack k ∈ K
if
∑

i∈C wi > Wk. If C is a cover, no feasible solution can have xk,i = 1 for all i ∈ C, so∑
i∈C xk,i ≤ |C| − 1 is a valid constraint—called a cover cut. When C is minimal (that is,

C \ {i} is not a cover for every i ∈ C), such cover cuts help tighten the knapsack IP by cutting
off fractional LP solutions. We generate (a subset of all) cover cuts for each knapsack k as
follows: for each i ∈ N , let j > i be minimal such that C = {i, i + 1, . . . , j} is a cover for k
(if such a j exists). Since wi ≥ wj for j > i, C is a minimal cover, and moreover the extended
cover cut

∑j
i=1 xi ≤ |C| − 1 is valid and dominates the minimal cover cut

∑
i∈C xi ≤ |C| − 1.

Extended cover cuts generated from minimal covers are known to be facet defining for the integer
hull under certain natural conditions [Conforti et al., 2014] (though these are in general a more
limited/weaker family of cuts than those obtained via lifting in Prasad et al. [2024] covered in
Chapter 3).

We investigate the relationship between three scoring rules for cutting planes. The first is

48

(a) µ · E+ (1− µ) · P (b) µ · E+ (1− µ) · D

(c) µ · D+ (1− µ) · P

Figure 4.3: Reverse Chvátal distribution with 100 items and 10 knapsacks.

efficacy (E), which is the perpendicular distance from the current LP solution to the cutting
plane. The second is parallelism (P), which measures the angle between the objective and the
normal vector to the cutting plane. The third is directed cutoff (D), which is the distance from
the current LP solution to the cutting plane along the direction of the line segment connecting
the LP solution to the current best incumbent integer solution. More details, including explicit
formulas, can be found in Balcan et al. [2021d] and references therein.

We consider two specific instances of the multiple knapsack problem, which are loosely
based on a class of knapsack problems introduced by Chvátal that are difficult to solve with
vanilla branch-and-bound [Chvátal, 1980, Yang et al., 2021]. In the first, pi = wi for all i ∈ N ,
and Wk = ⌊(

∑
i∈N wi)/2|K|⌋+ (k − 1) for each k = 1, . . . , |K|. In the second, pi = w|N |−i+1,

so the most valuable item is the lightest and the least valuable item is the heaviest, and Wk is
defined as in the first type. We call the first class of problems Chvátal instances and the second
class reverse Chvátal instances. For a given N,K, we generate (reverse) Chvátal instances by
drawing each weight independently as wi = ⌊zi⌋, where zi ∼ N (50, 2), and sorting the items by
weight in descending order.

In our experiments, we add (whenever possible) two extended cover cuts obtained in the
aforementioned manner at every node of the B&C tree. The two cuts chosen are the two with the
highest score µ ·ascore1 + (1− µ) ·ascore2 among all extended cover cuts that are violated
by the current LP optimum, where ascore1,ascore2 ∈ {E,D,P}. Figures 4.1-4.4 display

49

(a) µ · E+ (1− µ) · P (b) µ · E+ (1− µ) · D

(c) µ · D+ (1− µ) · P

Figure 4.4: Reverse Chvátal distribution with 100 items and 15 knapsacks.

the average tree size over 1000 samples for different Chvátal and reverse Chvátal distributions
as a function of µ, where the domain [0, 1] of µ is discretized in increments of 0.01. We ran our
experiments using the Python API of CPLEX 12.10 with default cut generation turned off. All
other aspects of B&C (e.g. variable and node selection) are controlled by the default settings
of CPLEX. The key takeaway of our plots is that tuning a convex combination of scoring rules
can lead to significant savings in B&C tree size, and that this tuning must be done with the
IP distribution in mind. No single parameter produces small trees for all the distributions we
considered, and in fact a µ that minimizes tree size for one distribution can result in the largest
trees for another (as in Figures 4.2b and 4.4b, for example). Furthermore, many of the plots
display discernible trends (and in some cases are quite smooth), suggesting that the number of
samples required to avoid overfitting in practice can be significantly smaller than our theoretical
bounds.

4.4.5 Improved bounds for branch-and-cut
To allow node selection, branching, and cutting-plane selection to be tuned simultaneously, we
apply Theorem 4.4.7. This allows us to bound the pseudo-dimension of the family of functions
{costµ1,µ2,λ}, where µ1 controls branching, µ2 controls cutting-plane selection, and λ controls
node selection. Let actions1(T , Q) denote the set of branching actions available at Q, and let

50

actions2(T , Q) denote the set of cutting planes available at Q. Let b1, b2 ∈ N be such that
actions1(T , Q) ≤ b1 and actions2(T , Q) ≤ b2 for all T and all Q ∈ T . Fix two branching
scores ascore1

1,ascore
1
2, fix two cutting-plane selection scores ascore2

1,ascore
2
2, and fix

two node-selection scores nscore1,nscore2.
Theorem 4.4.9. Let cost(Q) be any tree-constant cost function, and let costµ1,µ2,λ be the cost of
the tree built by B&C using branching score µ1 ·ascore1

1 + (1− µ1) ·ascore1
2, cutting-plane

selection score µ2 · ascore2
1 + (1− µ2) · ascore2

2, and node-selection score λ · nscore1 +
(1− λ) · nscore2. Then, with ∆ = O(n), Pdim({costµ1,µ2,λ}) = O(n2 + n log(b1 + b2)).

Comparison to existing bounds

Balcan et al. [2021d], Vitercik [2021] give a pseudo-dimension bound for tree search with a linear
dependence on a cap κ on the number of nodes allowed in any tree. Their pseudo-dimension
bound in our setting is Pdim({costµ1,µ2,λ}) = O(κ log κ+κ log b1+κ log b2). While κ is treated
as a constant, it can be a prohibitively large quantity. In fact, without explicitly enforcing a
limit on the number of nodes expanded by B&C, Balcan et al. [2021d], Vitercik [2021] obtain
a pseudo-dimension bound of O(2n(log b1 + log b2)). Balcan et al. [2018a] use the path-wise
property to prove that Pdim({costµ}) = O(n2) for single-variable branching, but for the case
where branching is the only tunable component of B&C (and node selection is fixed).

4.4.6 Conclusions and future research
We presented a general model of tree search and proved sample complexity guarantees for this
model that improve and generalize upon the recent sample complexity theory for configuring
branch-and-cut. There are many interesting and open directions for future research. One com-
pelling open question is to obtain pseudo-dimension bounds when action sets are infinite. Balcan
et al. [2021d] alluded to this question in the case of cutting planes, and neither the techniques
of their work nor the techniques of the present work can handle, for example, important in-
finite cutting-plane families such as the class of Gomory mixed-integer cuts, or the infinitely
many valid disjunctions that could be branched on. Beyond integer programming, our model
of tree search could potentially be applied to completely different problem domains that exhibit
tree structure. Another direction is to extend our results to convex combinations of ℓ > 2 scoring
rules µ1score1+. . . µℓscoreℓ, as Balcan et al. [2021d] do in the special case of single-variable
branching. However, their pseudo-dimension bound grows exponentially in the number of vari-
ables n in that special case; developing techniques that lead to a polynomial dependence on n
remains a challenging open question.

51

4.5 Structural Analysis of Branch-and-Cut and the Learn-
ability of Gomory Mixed-Integer Cuts

The class of Gomory mixed-integer (GMI) cuts are one of the most important family of cutting
planes used in integer programming solvers. Bixby et al. [1999] and, more recently, Achter-
berg and Wunderling [2013] provide metrics reporting the outsized performance improvement
of solvers due to GMI cuts. GMI cuts were furthermore the first class of general-purpose cuts
that enabled a successful software implementation of branch-and-cut, by Balas et al. [1996b].

In this chapter, we study data-dependent GMI cut configuration. Figure 4.5 illustrates that
tuning GMI cut selection parameters according to the instance distribution at hand can have a
large impact on B&C’s performance, and that for one distribution, the best parameters can be
very different—in fact opposite—than the best parameters for another distribution.

Prior sample complexity work (including primarily the work presented in the previous two
chapters) has been unable to handle GMI cuts because there are an uncountably infinite number
of different GMI cuts that one could add, whereas the techniques developed in those chapters
were only able to handle cutting plane families of finite effective size. The current work closes
this gap.

The key challenge is that an infinitesimal change to any GMI cut can completely change the
entire course of B&C because a cut added at the root remains in the LP relaxations stored in
each node all the way to the leaves. At its core, our analysis therefore involves understanding
an intricate interplay between the continuous and discrete components of our problem. The first,
continuous component requires us to characterize how an LP’s solution changes as a function
of its constraints. The optimum will move continuously through space until it jumps from one
vertex of the polytope to another. We use this characterization to analyze how the B&C tree—a
discrete, combinatorial object—varies as a function of its LP guidance, which allows us to prove
our sample complexity bound.

Contributions

We study the learnability of Gomory mixed integer (GMI) cuts. In order to prove our sample
complexity bound for GMI cuts, we analyze how the branch-and-cut tree varies as a function of
the cut parameters on any IP. We prove that the set of all possible cuts can be partitioned into a
finite number of regions such that within any one region, branch-and-cut builds the exact same
search tree. Moreover, the boundaries between regions are defined by low-degree polynomials.
The simplicity of this function allows us to prove our sample complexity bound. The buildup to
this result consists of three main contributions, each of which we believe may be of independent
interest:

1. Our first main contribution addresses a fundamental question in linear programming: how
does an LP’s solution change when new constraints are added? As the constraints vary, the
solution will jump from vertex to vertex of the LP polytope. We prove that one can partition
the set of all possible constraint vectors into a finite number of regions such that within
any one region, the LP’s solution has a clean closed form. Moreover, we prove that the
boundaries defining this partition have a specific form, defined by degree-2 polynomials.

52

(a) Facility location with 40 locations and 40 clients;
sampled by perturbing a base facility location IP.

(b) Facility location with 80 locations, 80 clients,
and random Euclidean distance costs.

Figure 4.5: These figures illustrate the need for distribution-dependent policies for choosing cuts.
We plot the average number of nodes B&C expands as a function of a parameter µ that controls a
policy to add GMI cuts, detailed in Appendix B. In each figure, we draw a training set of facility
location IPs from two different distributions. In Figure 4.5a, we define the distribution by starting
with a uniformly random facility location instance and perturbing its costs. In Figure 4.5b, the
costs are more structured: the facilities are located along a line and the clients have uniformly
random locations. In Figure 4.5a, a smaller value of µ leads to small search trees, but in Fig-
ure 4.5b, a larger value of µ is preferable.

2. We build on this result in our second main contribution: a novel analysis of how the entire
branch-and-cut search tree changes as a function of the cuts added at the root. Our analysis
of how the branch-and-cut search tree changes as a function of the cuts added has four
steps, illustrated by Figure 4.6:

(a) First, we use our result about LPs to show that the cut parameter space can be parti-
tioned into regions such that in any one region, the LP optimal solution at any node of
the branch-and-cut search tree has a clean closed form, as illustrated in Figure 4.6a.

(b) We use this result to show that each region can be further partitioned (as illustrated
in Figure 4.6b) such that no matter what cut we employ in any one region, all of
the branching decisions that branch-and-cut makes are fixed. Intuitively, this is be-
cause the branching decisions depend on the LP relaxation, which has a closed-form
solution in any one region.

(c) Next, we show that each region from Figure 4.6b can be further partitioned into
regions (illustrated in Figure 4.6c) where in any one region, for every node in the
branch-and-cut tree, the integrality of that node’s LP relaxation is invariant no matter
what cut in that region we use.

(d) Finally, we show that each of these regions can be further subdivided into regions (as
in Figure 4.6d) where the nodes that branch-and-cut fathoms are fixed, so the tree it
builds is fixed.

3. This result allows us to prove sample complexity bounds for learning high-performing
cutting planes from the class of GMI cuts, our third main contribution. Our key technical

53

(a) LP optimum
closed form

(b) Invariant
branching

(c) Invariant LP
integrality

(d) Invariant B&C
execution

Figure 4.6: Our branch-and-cut analysis involves successive refinements to our partition of the
parameter space.

insight is that the GMI cutting plane coefficients can be viewed as a mapping that embeds
our polynomial partition from the previous step (Figure 4.6) into the space of GMI cut
parameters. We prove that the resulting embedding does not distort the polynomial hy-
persurfaces too much: the embedded hypersurfaces are still polynomial, with only slightly
larger degree.

Notation and Prerequisite Results

We consider pure integer programs given by objective c ∈ Rn, constraint matrix A ∈ Zm×n, and
constraint vector b ∈ Zm, of the form

max{c⊤x : Ax ≤ b,x ≥ 0,x ∈ Zn}. (4.2)

The linear programming (LP) relaxation is formed by removing the integrality constraints:
max{c⊤x : Ax ≤ b,x ≥ 0}. We denote the optimal solution to (4.2) by x∗

IP and its LP-
relaxation optimal solution by x∗

LP. Let z∗LP = c⊤x∗
LP. If σ is a set of constraints, we let x∗

IP(σ)
denote the optimum of (4.2) subject to these additional constraints (similarly define z∗LP(σ) and
x∗
LP(σ)).

Polyhedra and polytopes. A set P ⊆ Rn is a polyhedron if there exists an integer m, A ∈
Rm×n, and b ∈ Rm such that P = {x ∈ Rn : Ax ≤ b}. P is a rational polyhedron if there exists
A ∈ Zm×n and b ∈ Zm such that P = {x ∈ Rn : Ax ≤ b}. A bounded polyhedron is called
a polytope. The feasible regions of all IPs considered in this chapter are assumed to be rational
polytopes 1 of full dimension. Let P = {x ∈ Rn : aix ≤ bi, i ∈M} be a nonempty polyhedron.
We assume the representation of P is irredundant, that is, {x ∈ Rn : aix ≤ bi, i ∈M \ {j}} ̸=
P for all j ∈M . For any I ⊆M , the set FI := {x ∈ Rn : aix = bi, i ∈ I,aix ≤ bi, i ∈M \ I}
is a face of P . Conversely, if F is a nonempty face of P , then F = FI for some I ⊆M . Faces of
dimension 1 are called edges and faces of dimension 0 are called vertices. A detailed reference
on the polyhedral theory used in our arguments can be found in Conforti et al. [2014].

Given a set of constraints σ, let P(σ) denote the polyhedron that is the intersection of P with
all inequalities in σ.

1This assumption is not a restrictive one. The Minkowski-Weyl theorem states that any polyhedron can be
decomposed as the sum of a polytope and its recession cone. All results in this chapter can be derived for rational
polyhedra by considering the corresponding polytope in the Minkowski-Weyl decomposition.

54

Gomory mixed-integer cuts. We denote a cutting plane in this chapter by the constraint
α⊤x ≤ β. Let P be the feasible region of the LP relaxation of (4.2) and PI = P ∩ Zn be
the IP’s feasible set. Recall a cut is valid if it is satisfied by every integer point in PI: α⊤x ≤ β
for all x ∈ PI. A valid cut separates a point x ∈ P \ PI if α⊤x > β. We refer to a cut both by
its parameters (α, β) ∈ Rn+1 and the halfspace α⊤x ≤ β in Rn. An important family of valid
cuts that we study in this chapter is the set of Gomory mixed integer (GMI) cuts. For decades,
general-purpose cutting planes were thought to be unwieldy and useless for solving IPs quickly
in practice. However, a seminal paper by Balas et al. [1996b] completely reversed this sentiment
by showing that GMI cuts added throughout the B&C tree led to massive speedups. Today, GMI
cuts are one of the most important components of state-of-the-art IP solvers.
Definition 4.5.1 (Gomory mixed integer cut). Suppose the feasible region of the IP is in equality
form Ax = b, x ≥ 0 (which can be achieved by adding slack variables). For u ∈ Rm, let
fi denote the fractional part of (u⊤A)i and let f0 denote the fractional part of u⊤b. That is,
(u⊤A)i = (⌊u⊤A⌋)i + fi and u⊤b = ⌊u⊤b⌋ + f0. The Gomory mixed integer (GMI) cut
parameterized by u is ∑

i:fi≤f0

fixi +
f0

1− f0

∑
i:fi>f0

(1− fi)xi ≥ f0.

The form of the GMI cut is obtained via a slightly more nuanced rounding procedure than
the one used to obtain the CG cut ⌊u⊤A⌋x ≤ ⌊u⊤b⌋. GMI cuts strictly dominate CG cuts. More
details about GMI cuts can be found in the tutorial by Cornuéjols [2008].

Every step of B&C—including node and variable selection and the choice of whether or not
to fathom—depends crucially on guidance from LP relaxations. Tighter LP relaxations provide
more valuable LP guidance, highlighting the importance of cuts.

Polynomial arrangements in Euclidean space. Let p ∈ R[y1, . . . , yk] be a polynomial of
degree at most d. The polynomial p partitions Rk into connected components that belong to
either Rk \ {(y1, . . . , yk) : p(y1, . . . , yk) = 0} or {(y1, . . . , yk) : p(y1, . . . , yk) = 0}. When
we discuss the connected components of Rk induced by p, we include connected components in
both these sets. We make this distinction because previous work on sample complexity for data-
driven algorithm design oftentimes only needed to consider the connected components of the
former set. The number of connected components in both sets is O(dk) [Warren, 1968, Milnor,
1964, Thom, 1965].

The main distinction between our analysis in this chapter and the techniques used in the
previous sections can be summarized as follows. Let µ be a (potentially multidimensional) pa-
rameter controlling some aspect of the IP solver (e.g. a mixture parameter between branching
rules or a cutting-plane parameter). In previous works, as µ varied, there were only a finite
number of states each node of branch-and-cut could be in. For example, in the case of branch-
ing/variable selection, µ controls the additional branching constraint added to the IP at any given
node of the search tree. There are only finitely many possible branching constraints, so there
are only finitely many possible “child” IPs induced by µ. Similarly, if µ represents the parame-
terization for Chvátal-Gomory cuts [Chvátal, 1973, Gomory, 1958], since Balcan et al. [2021d]
(Section 4.3) showed that there are only finitely many distinct Chvátal-Gomory cuts for a given

55

IP, as µ varies, there are only finitely many possible child IPs induced by µ at any stage of the
search tree. However, in many settings, this property does not hold. For example if µ = (α, β)
controls the normal vector and offset of an additional feasible constraint α⊤x ≤ β, there are
infinitely many possible IPs corresponding to the choice of (α, β). Similarly, if µ controls the
parameterization of a GMI cut, there are infinitely many IPs corresponding to the choice of µ
(unlike Chvátal-Gomory cuts). in this chapter, we develop a new structural understanding of
B&C that is significantly more involved than the structural results in prior work.

4.5.1 Linear programming sensitivity
Our main result in this section addresses a fundamental question in linear programming: how is
an LP’s optimal solution affected by the addition of new constraints? Later in this chapter, we
use this result to prove sample complexity bounds for optimizing over the canonical family of
GMI cuts.

More formally, fixing an LP with m constraints and n variables, if x∗
LP(α

⊤x ≤ β) ∈ Rn

denotes the new LP optimum when the constraint α⊤x ≤ β is added, we pin down a precise
characterization of x∗

LP(α
⊤x ≤ β) as a function of α and β. We show that x∗

LP(α
⊤x ≤

β) has a piece-wise closed form: there are surfaces partitioning Rn+1 such that within each
connected component induced by these surfaces, x∗

LP(α
⊤x ≤ β) has a closed form. While the

geometric intuition used to establish this piece-wise structure relies on the basic property that
optimal solutions to LPs are achieved at vertices, the surfaces defining the regions are perhaps
surprisingly nonlinear: they are defined by multivariate degree-2 polynomials in α, β.

The proof requires us to: (1) track the set of edges of the LP polytope intersected by the new
constraint, and once those edges are fixed, (2) track which edge yields the vertex with the highest
objective.

Let M = [m] denote the set of m constraints. For E ⊆ M , let AE ∈ R|E|×n and bE ∈ R|E|

denote the restrictions of A and b to E. For α ∈ Rn, β ∈ R, and E ⊆ M with |E| = n− 1, let
AE,α ∈ Rn×n denote the matrix obtained by adding row vector α to AE and let Ai

E,α,β ∈ Rn×n

be the matrix AE,α with the ith column replaced by (bE, β)
⊤.

Theorem 4.5.2. Let (c, A, b) be an LP with optimal solution x∗
LP. There are at most mn hy-

perplanes and m2n degree-2 polynomial hypersurfaces partitioning Rn+1 into connected com-
ponents such that for each component C, either: (1) x∗

LP(α
⊤x ≤ β) = x∗

LP, or (2) there is a set
of constraints E ⊆M with |E| = n− 1 such that x∗

LP(α
⊤x ≤ β)[i] = det(Ai

E,α,β)/ det(AE,α)
for all (α, β) ∈ C.

Proof. First, if α⊤x ≤ β does not separate x∗
LP, then x∗

LP(α
⊤x ≤ β) = x∗

LP. The set of all
such cuts is the halfspace given by {(α, β) ∈ Rn+1 : α⊤x∗

LP ≤ β}. All other cuts separate x∗
LP

and thus pass through P = {x ∈ Rn : Ax ≤ b,x ≥ 0}, and the new LP optimum is achieved at
a vertex created by the cut. We consider the new vertices formed by the cut, which lie on edges
of P . Each edge e of P can be identified with a subset E ⊂ M of size n− 1 such that the edge
is the set of all points x such that a⊤

i x = bi for all i ∈ E and a⊤
i x ≤ bi for all i ∈ M \ E

where ai is the ith row of A. If we drop the inequality constraints defining the edge, the equality
constraints define a line in Rn. The intersection of the cut α⊤x ≤ β and this line is the solution
to the system of n linear equations in n variables: AEx = bE,α

⊤x = β. By Cramer’s rule, the

56

unique solution x = (x1, . . . , xn) to this system is given by xi = det(Ai
E,α,β)/ det(AE,α). To

ensure that the intersection point lies on the edge of the polytope, we stipulate that it satisfies the
inequality constraints in M \ E. That is,

n∑
j=1

aij ·
det(Aj

E,α,β)

det(AE,α)
≤ bi (4.3)

for every i ∈M \E (if α, β satisfy any of these constraints, it must be that det(AE,α) ̸= 0, which
guarantees that AEx = bE,α

⊤x = β has a unique solution). Multiplying through by det(AE,α)
shows that this constraint is a halfspace in Rn+1, since det(AE,α) and det(Ai

E,α,β) are linear in α
and β. The collection of all the hyperplanes defining the boundaries of these halfspaces over all
edges of P induces a partition of Rn+1 into connected components such that for all (α, β) within
a given component, the (nonempty) set of edges of P that the hyperplane α⊤x = β intersects is
invariant.

Now, consider a single connected component, denoted by C for brevity. Let e1, . . . , ek denote
the edges intersected by cuts in C, and let E1, . . . , Ek ⊂ M denote the sets of constraints that
are binding at each of these edges, respectively. For each pair ep, eq, consider the surface

n∑
i=1

ci ·
det(Ai

Ep,α,β)

det(AEp,α)
=

n∑
i=1

ci ·
det(Ai

Eq ,α,β)

det(AEq ,α)
. (4.4)

Clearing the (nonzero) denominators shows this is a degree-2 polynomial hypersurface in α, β
in Rn+1. This hypersurface is the set of all (α, β) for which the LP objective values achieved
at the vertices on edges ep and eq are equal. The collection of these surfaces for each p, q par-
titions C into further connected components. Within each component C ′, the edge containing
the vertex that maximizes the objective is invariant. If this edge corresponds to binding con-
straints E, x∗

LP(α
⊤x ≤ β) has the closed form x∗

LP(α
⊤x ≤ β)[i] = det(Ai

E,α,β)/ det(AE,α)
for all (α, β) ∈ C ′. We now count the number of surfaces in our decomposition. P has at
most

(
m

n−1

)
≤ mn−1 edges, and for each edge E, Equation (4.3) defines at most |M \ E| ≤ m

hyperplanes for a total of at most mn hyperplanes. Equation (4.4) defines a degree-2 polynomial
hypersurface for every pair of edges, of which there are at most

(
mn

2

)
≤ m2n.

In Section 4.5.4, we generalize Theorem 4.5.2 to understand x∗
LP as a function of any K

constraints. In this case, we show that the piecewise structure is given by degree-2K multivariate
polynomials.

Example in two dimensions

Consider the LP
max{x+ y : x ≤ 1, y ≥ 0, y ≤ x}.

The optimum is at (x∗, y∗) = (1, 1). Consider adding an additional constraint α1x + α2y ≤ 1.
Let h denote the hyperplane α1x + α2y = 1. We derive a description of the set of parameters
(α1, α2) such that h intersects the hyperplanes x = 1 and y = x. The intersection of h and x = 1
is given by

(x, y) =

(
1,

1− α1

α2

)
,

57

Figure 4.7: Decomposition of the parameter space: the blue region contains the set of (α1, α2)
such that the constraint intersects the feasible region at x = 1 and x = y. The red lines consist
of all (α1, α2) such that the objective value is equal at these intersection points. The red lines
partition the blue region into two components: one where the new optimum is achieved at the
intersection of h and x = y, and one where the new optimum is achieved at the intersection of h
and x = 1.

which exists if and only if α2 ̸= 0. This intersection point is in the LP feasible region if and only
if 0 ≤ 1−α1

α2
≤ 1 (which additionally ensures that α2 ̸= 0). Similarly, h intersects y = x at

(x, y) =

(
1

α1 + α2

,
1

α1 + α2

)
,

which exists if and only if α1+α2 ̸= 0. This intersection point is in the LP feasible region if and
only if 0 ≤ 1

α1+α2
≤ 1. Now, we put down an “indifference” curve in (α1, α2)-space that repre-

sents the set of (α1, α2) such that the value of the objective achieved at the two aforementioned
intersection points is equal. This surface is given by

2

α1 + α2

= 1 +
1− α1

α2

.

Since α1 + α2 ̸= 0 and α2 ̸= 0 (for the relevant α1, α2 in consideration), this is equivalent to
α2
1−α2

2−α1+α2 = 0, which is a degree-2 curve in α1, α2. The left-hand-side can be factored to
write this as (α1−α2)(α1+α2− 1) = 0. Therefore, this curve is given by the two lines α1 = α2

and α1 + α2 = 1. Figure 4.7 illustrates the resulting partition of (α1, α2)-space.
It turns out that when n = 2 the indifference curve can always be factored into a product of

linear terms. Let the objective of the LP be (c1, c2), and let s1x+ s2y = u1 and t1x+ t2y = v1 be
two intersecting edges of the LP feasible region. Let α1x+ α2y = β be an additional constraint.

58

Figure 4.8: Indifference surface for two edges of the feasible region of an LP in three variables.

The intersection points of this constraint with the two lines, if they exist, are given by(
s2β − uα2

s2α1 − s1α2

,
s1β − uα1

s1α2 − s2α1

)
and

(
t2β − vα2

t2α1 − t1α2

,
t2β − vα1

t1α2 − t2α1

)
.

The indifference surface is thus given by

c1
s2β − uα2

s2α1 − s1α2

+ c2
s1β − uα1

s1α2 − s2α1

= c1
t2β − vα2

t2α1 − t1α2

+ c2
t2β − vα1

t1α2 − t2α1

.

For α1, α2 such that s2α1 − s1α2 ̸= 0 and t2α1 − t1α2 ̸= 0, clearing denominators and some
manipulation yields

(c1α2 − c2α1)((ut1 − vs1)α2 − (ut2 − vs2)α1 + (s2t2 − t1s2)β) = 0.

This curve consists of the two planes c1α2 − c2α1 = 0 and (ut1 − vs1)α2 − (ut2 − vs2)α1 +
(s2t2 − t1s2)β = 0.

If n > 2, the indifference surface need not decompose into linear terms. For example,
consider an LP in three variables x, y, z with the constraints x+ y ≤ 1, x+ z ≤ 1, x ≤ 1, z ≤ 1.
Writing out the indifference surface (assuming the objective is c = (1, 1, 1)⊤) for the vertex on
the intersection of {x+ y = 1, x = 1} and the vertex on {x+ z = 1, z = 1} yields

α1α2 − α2β − α2
3 + α3β = 0.

Setting β = 1, we can plot the resulting surface in α1, α2, α3 (Figure 4.8).

59

4.5.2 Structure and sensitivity of branch-and-cut
We now use Theorem 4.5.2 to answer a fundamental question about B&C: what is the structure
of the B&C tree as a function of cuts at the root? Answering this question brings us one step
closer toward providing sample complexity guarantees for GMI cuts. Said another way, we
derive conditions on α1,α2 ∈ Rn, β1, β2 ∈ R, such that B&C behaves identically on the two IPs

max{c⊤x : Ax ≤ b,α⊤
1 x ≤ β1,x ∈ Zn

≥0} and max{c⊤x : Ax ≤ b,α⊤
2 x ≤ β2,x ∈ Zn

≥0}.

We prove that the set of all cuts can be partitioned into a finite number of regions where by em-
ploying cuts from any one region, the B&C tree remains exactly the same. We also prove that the
boundaries between regions are defined by low-degree polynomials. Figure 4.6 is a schematic
diagram of our proof, which breaks the analysis of B&C into four main steps. Each step succes-
sively refines the partition obtained in the previous step, and uses the properties established in
the previous step to analyze the next stage of B&C. We focus on a single cut added to the root
and extend to multiple cuts in Section 4.5.4.

We use the following notation in this section. Given an IP, let τ = ⌈maxx∈P ∥x∥∞⌉ be the
maximum magnitude coordinate of any LP-feasible solution, rounded up. By Cramer’s rule and
Hadamard’s inequality, τ ≤ annn/2 where a = ∥A∥∞,∞. However, τ can be much smaller. For
example, if A contains a row with only positive entries, then τ ≤ ∥b∥∞. Let BC := {x[i] ≤
ℓ,x[i] ≥ ℓ}0≤ℓ≤τ,i∈[n], which contains the set of all possible branching constraints. Let Aσ and
bσ denote A and b with the constraints in σ ⊆ BC added. For E ⊆ M ∪ σ, let AE,σ ∈ R|E|×n

and bE ∈ R|E| denote the restrictions of Aσ and bσ to E. For α ∈ Rn, β ∈ R and E ⊆ M ∪ σ
with |E| = n− 1, let AE,α,σ ∈ Rn×n denote the matrix obtained by adding row vector α to AE,σ

and let Ai
E,α,β,σ ∈ Rn×n be the matrix AE,α,σ with the ith column replaced by (bE,σ, β)

⊤.
We require the following lemma which bounds the number of relevant subsets of BC :=

{x[i] ≤ ℓ,x[i] ≥ ℓ}0≤ℓ≤τ,i∈[n] that define a possible node expanded by B&C. BC is a set of size
2n(τ + 1) so naı̈vely there are at most 22n(τ+1) subsets of branching constraints. The following
observation allows us to greatly reduce the number of sets we consider.
Lemma 4.5.3. Fix an IP (c, A, b). Define an equivalence relation on pairs of branching-
constraint sets σ1, σ2 ⊆ BC, by σ1 ∼ σ2 ⇐⇒ x∗

LP(α
⊤x ≤ β, σ1) = x∗

LP(α
⊤x ≤ β, σ2)

for all possible cutting planes α⊤x ≤ β. The number of equivalence classes of ∼ is at most τ 3n.

Proof. Consider as an example σ1 = {x[1] ≤ 1,x[1] ≤ 5} and σ2 = {x[1] ≤ 1}. We have
x∗
LP(α

⊤x ≤ β, σ1) = x∗
LP(α

⊤x ≤ β, σ2) for any cut α⊤x ≤ β, because the constraint x[1] ≤ 5
is redundant in σ1. More generally, any σ ⊆ BC can be reduced by preserving only the tightest
≤ constraint and tightest ≥ constraint without affecting the resulting LP optimal solutions. The
number of such unique reduced sets is at most ((τ + 2)2)n < τ 3n (for each variable, there are
τ + 2 possibilities for the tightest ≤ constraint: no constraint or one of x[i] ≤ 0, . . . ,x[i] ≤ τ ,
and similarly τ + 2 possibilities for the ≥ constraint).

Step 1: Understanding how the cut affects the LP optimum at any node of the B&C tree

Theorem 4.5.2 gives a (piecewise) closed form for the LP optimum x∗
LP(α

⊤x ≤ β) at the root
of the B&C tree as a function of coefficients (α, β) ∈ Rn+1 determining the cut. The first step

60

is to extend this result to get a handle on the LP optimum at any node of any B&C tree. Suppose
σ ⊆ BC is a set of branching constraints (any node of any B&C tree can be identified with some
σ ⊆ BC). We refine the partition of space obtained in Theorem 4.5.2 so that within a given
region of the new partition, x∗

LP(α
⊤x ≤ β, σ) has a closed form for all σ. This is illustrated by

Figure 4.6a.
Lemma 4.5.4. For any IP (c, A, b), there are at most (m + 2n)nτ 3n hyperplanes and at most
(m+2n)2nτ 3n degree-2 polynomial hypersurfaces partitioning Rn+1 into connected components
such that for each component C and every σ ⊂ BC, either: (1) x∗

LP(α
⊤x ≤ β, σ) = x∗

LP(σ)
and z∗LP(α

⊤x ≤ β, σ) = z∗LP(σ), or (2) there is a set of constraints E ⊆M ∪σ with |E| = n−1

such that x∗
LP(α

⊤x ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
for all (α, β) ∈ C.

Proof. We carry out the same reasoning in the proof of Theorem 4.5.2 for each reduced σ. The
number of edges of P(σ) is at most

(
m+|σ|
n−1

)
≤ (m + |σ|)n−1. For each edge E, we considered

at most |(M ∪ σ) \ E| ≤ m + |σ| hyperplanes, for a total of at most (m + |σ|)n halfspaces.
Then, we had a degree-2 polynomial hypersurface for every pair of edges, of which there are at
most

(
(m+|σ|)n

2

)
≤ (m + |σ|)2n. Summing over all reduced σ (of which there are at most τ 3n),

combined with the fact that if σ is reduced then |σ| ≤ 2n, we get a total of at most (m+2n)nτ 3n

hyperplanes and at most (m+ 2n)2nτ 3n degree-2 hypersurfaces, as desired.

Step 2: Conditions for branching decisions to be identical

We next refine the decomposition obtained in Lemma 4.5.4 so that the branching constraints
added at each step of B&C are invariant within a region, as in Figure 4.6b. For concreteness, we
analyze the product scoring rule used by the leading open-source solver SCIP [Gamrath et al.,
2020]. The high-level intuition is that we zoom in on a connected component in the partition of
Lemma 4.5.4. Within this component, we may express x∗

LP(α
⊤x ≤ β, σ) explicitly in terms of

α, β, for all σ. This allows us to unravel the branching rule and derive conditions for invariance.
We omit the details here, which can be found in the full version of the paper.
Lemma 4.5.5. There is a set of of at most 3(m + 2n)nτ 3n hyperplanes and (m + 2n)2nτ 3n

degree-2 polynomial hypersurfaces partitioning Rn+1 into connected components such that for
any connected component C and any σ, the set of branching constraints {xi ≤ ⌊x∗

LP(α
⊤x ≤

β, σ)[i]⌋, xi ≥
⌈
x∗
LP(α

⊤x ≤ β, σ)[i]
⌉
| i ∈ [n]} is invariant across all (α, β) ∈ C.

Proof. Fix a connected component C in the decomposition established in Lemma 4.5.4. By
Lemma 4.5.4, for each σ, either x∗

LP(α
⊤x ≤ β, σ) = x∗

LP(σ) or there exists E ⊆ M ∪ σ such

that x∗
LP(α

⊤x ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
for all (α, β) ∈ C. Fix a variable i ∈ [n], which

corresponds to two branching constraints

xi ≤
⌊
x∗
LP(α

⊤x ≤ β, σ)[i]
⌋

and xi ≥
⌈
x∗
LP(α

⊤x ≤ β, σ)[i]
⌉
. (4.5)

If C is a component where x∗
LP(α

⊤x ≤ β, σ) = x∗
LP(σ), then these two branching constraints

are trivially invariant over (α, β) ∈ C. Otherwise, in order to further decompose C such that the
right-hand-sides of these constraints are invariant for every σ, we add the two decision boundaries

61

given by

k ≤
det(Ai

E,α,β,σ)

det(AE,α,σ)
≤ k + 1

for every i, σ, and every integer k = 0, . . . , τ − 1, where τ = maxx∈P∩Zn ∥x∥∞. This ensures
that within every connected component of C induced by these boundaries (hyperplanes),

⌊x∗
LP(α

⊤x ≤ β, σ)[i]⌋ =

⌊
det(Ai

E,α,β,σ)

det(AE,α,σ)

⌋
and

⌈
x∗
LP(α

⊤x ≤ β, σ)[i]
⌉
=

⌈
det(Ai

E,α,β,σ)

det(AE,α,σ)

⌉

are invariant, so the branching constraints from Equation (4.5) are invariant. For a fixed σ, there
are two hyperplanes for every E ⊆ M ∪ σ corresponding to an edge of P(σ) and i = 1, . . . , n,
for a total of at most 2n

(
m+|σ|
n−1

)
≤ 2n(m + |σ|)n−1 hyperplanes. Summing over all reduced σ,

we get a total of 2n(m + 2n)n−1τ 3n < 2(m + 2n)nτ 3n hyperplanes. Adding these hyperplanes
to the set of hyperplanes established in Lemma 4.5.4 yields the lemma statement.

Lemma 4.5.6. For any IP (c, A, b), there are at most 3(m + 2n)nτ 3n hyperplanes, 3(m +
2n)3nτ 4n degree-2 polynomial hypersurfaces, and (m + 2n)6nτ 4n degree-5 polynomial hyper-
surfaces partitioning Rn+1 into connected components such that within each component, the
branching constraints used at every step of B&C are invariant.

Proof sketch. The proof is a careful analysis of the product scoring rule, combined with the pre-
vious lemma, which allows us to derive conditions ensuring that the branching variable selected
is invariant.

Step 3: When do nodes have an integral LP optimum?

We now move to the most critical phase of branch-and-cut: deciding when to fathom a node. The
first reason a node might be fathomed is if the LP relaxation of the IP at that node has an integral
solution. We derive conditions that ensure that nearby cuts have the same effect on the integrality
of the IP at any node in the search tree. Recall PI = P ∩Zn is the set of integer points in P . Let
V ⊆ Rn+1 denote the set of all valid cuts for the input IP (c, A, b). The set V is a polyhedron
since it can be expressed as

V =
⋂
x∈PI

{(α, β) ∈ Rn+1 : α⊤x ≤ β},

and PI is finite as P is bounded. For cuts outside V , we assume the B&C tree takes some special
form denoting an invalid cut. Our goal now is to decompose V into connected components such
that 1

[
x∗
LP(α

⊤x ≤ β, σ) ∈ Zn
]

is invariant for all (α, β) in each component.
Lemma 4.5.7. For any IP (c, A, b), there are at most 3(m + 2n)nτ 4n hyperplanes, 3(m +
2n)3nτ 4n degree-2 polynomial hypersurfaces, and (m + 2n)6nτ 4n degree-5 polynomial hyper-
surfaces partitioning Rn+1 into connected components such that for each component C and
each σ ⊆ BC, 1

[
x∗
LP

(
α⊤x ≤ β, σ

)
∈ Zn

]
is invariant for all (α, β) ∈ C.

62

Proof. Fix a connected component C in the decomposition that includes the facets defining V
and the surfaces obtained in Lemma 4.5.6. For all σ ∈ BC, xI ∈ PI, and i = 1, . . . , n, consider
the surface

x∗
LP(α

⊤x ≤ β, σ)[i] = xI[i]. (4.6)

This surface is a hyperplane, since by Lemma 4.5.4, either x∗
LP(α

⊤x ≤ β, σ)[i] = x∗
LP(σ)[i] or

x∗
LP(α

⊤x ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
, where E ⊆M∪σ is the subset of constraints corresponding

to σ and C. Clearly, within any connected component of C induced by these hyperplanes, for
every σ and xI ∈ PI, 1[x∗

LP(α
⊤x ≤ β, σ) = xI] is invariant. Finally, if x∗

LP(α
⊤x ≤ β, σ) ∈ Zn

for some cut α⊤x ≤ β within a given connected component, x∗
LP(α

⊤x ≤ β, σ) = xI for some
xI ∈ PIH(σ) ⊆ PI, which means that x∗

LP(α
⊤x ≤ β, σ) = xI ∈ Zn for all cuts α⊤x ≤ β in

that connected component.
We now count the number of hyperplanes given by Equation 4.6. For each σ, there are(

m+|σ|
n−1

)
≤ (m+2n)n−1 binding edge constraints E ⊆M∪σ defining the formula of Lemma 4.5.4,

and we have n|PI| hyperplanes for each E. Since τ = maxx∈PI
∥x∥∞, |PI| ≤ τn. So the total

number of hyperplanes given by Equation 4.6 is at most τ 3n(m + 2n)n−1nτn ≤ (m + 2n)nτ 4n.
The number of facets defining V is at most |PIH| ≤ |PI| ≤ τn. Adding these to the counts
obtained in Lemma 4.5.6 yields the final tallies in the lemma statement.

Lemma 4.5.7 is illustrated by Figure 4.6c. Next, suppose for a moment that B&C fathoms a
node if and only if either the LP is infeasible or the LP optimal solution is integral—that is, the
“bounding” of B&C is suppressed. In this case, the tree built by B&C is invariant within each
component of the partition in Lemma 4.5.7. Equipped with this observation, we now analyze the
full behavior of B&C.

Step 4: Pruning nodes with weak LP bounds

In this final step, we analyze the most important aspect of B&C: pruning nodes when the LP ob-
jective value is smaller than the best-known integral solution. Using the tools we have developed
so far, expressing the question “is the LP value at a node smaller than the best-known integral
solution?” becomes a simple matter of hyperplanes and halfspaces. This final step is illustrated
by Figure 4.6d.
Theorem 4.5.8. Given an IP (c, A, b), there is a set of at most O(14n(m + 2n)3n

2
τ 5n

2
) poly-

nomial hypersurfaces of degree ≤ 5 partitioning Rn+1 into connected components such that the
B&C tree built after adding the cut α⊤x ≤ β at the root is invariant over all (α, β) within a
given component.

Proof. Fix a connected component C in the decomposition induced by the set of hyperplanes
and degree-2 hypersurfaces established in Lemma 4.5.7. Let

Q1, . . . , Qi1 , I1, Qi1+1, . . . , Qi2 , I2, Qi2+1, . . . (4.7)

denote the nodes of the tree branch-and-cut creates, in order of exploration, under the assumption
that a node is pruned if and only if either the LP at that node is infeasible or the LP optimal
solution is integral (so the “bounding” of branch-and-bound is suppressed). Here, a node is

63

identified by the list σ of branching constraints added to the input IP. Nodes labeled by Q are
either infeasible or have fractional LP optimal solutions. Nodes labeled by I have integral LP
optimal solutions and are candidates for the incumbent integral solution at the point they are
encountered. (The nodes are functions of α and β, as are the indices i1, i2,) By Lemma 4.5.7
and the observation following it, this ordered list of nodes is invariant over all (α, β) ∈ C.

Now, given an node index ℓ, let I(ℓ) denote the incumbent node with the highest objective
value encountered up until the ℓth node searched by B&C, and let z(I(ℓ)) denote its objective
value. For each node Qℓ, let σℓ denote the branching constraints added to arrive at node Qℓ. The
hyperplane

z∗LP(α
⊤x ≤ β, σℓ) = z(I(ℓ)) (4.8)

(which is a hyperplane due to Lemma 4.5.4) partitions C into two subregions. In one subregion,
z∗LP(α

⊤x ≤ β, σℓ) ≤ z(I(ℓ)), that is, the objective value of the LP optimal solution is no greater
than the objective value of the current incumbent integer solution, and so the subtree rooted at
Qℓ is pruned. In the other subregion, z∗LP(α

⊤x ≤ β, σℓ) > z(I(ℓ)), and Qℓ is branched on
further. Therefore, within each connected component of C induced by all hyperplanes given by
Equation 4.8 for all ℓ, the set of node within the list (4.7) that are pruned is invariant. Combined
with the surfaces established in Lemma 4.5.7, these hyperplanes partition Rn+1 into connected
components such that as (α, β) varies within a given component, the tree built by branch-and-cut
is invariant.

Finally, we count the total number of surfaces inducing this partition. Unlike the counting
stages of the previous lemmas, we will first have to count the number of connected components
induced by the surfaces established in Lemma 4.5.7. This is because the ordered list of nodes
explored by branch-and-cut (4.7) can be different across each component, and the hyperplanes
given by Equation 4.8 depend on this list. From Lemma 4.5.7 we have 3(m + 2n)nτ 4n hy-
perplanes, 3(m + 2n)3nτ 4n degree-2 polynomial hypersurfaces, and (m + 2n)6nτ 4n degree-5
polynomial hypersurfaces. To determine the connected components of Rn+1 induced by the zero
sets of these polynomials, it suffices to consider the zero set of the product of all polynomials
defining these surfaces. Denote this product polynomial by p. The degree of the product polyno-
mial is the sum of the degrees of 3(m+2n)nτ 4n degree-1 polynomials, 3(m+2n)3nτ 4n degree-2
polynomials, and (m+ 2n)6nτ 4n degree-5 polynomials, which is at most

3(m+ 2n)nτ 4n + 2 · 3(m+ 2n)3nτ 4n + 5 · (m+ 2n)6nτ 4n < 14(m+ 2n)3nτ 4n.

By Warren’s theorem, the number of connected components of Rn+1 \ {(α, β) : p(α, β) =
0} is O((14(m + 2n)3nτ 4n)n−1), and by the Milnor-Thom theorem, the number of connected
components of {(α, β) : p(α, β) = 0} is O((14(m + 2n)3nτ 4n)n−1) as well. So, the number of
connected components induced by the surfaces in Lemma 4.5.7 is O(14n(m + 2n)3n

2
τ 4n

2
). For

every connected component C in Lemma 4.5.7, the closed form of z∗LP(α
⊤x ≤ β, σℓ) is already

determined due to Lemma 4.5.4, and so the number of hyperplanes given by Equation 4.8 is at
most the number of possible σ ⊆ BC, which is at most τ 3n. So across all connected components
C, the total number of hyperplanes given by Equation 4.8 is O(14n(m + 2n)3n

2
τ 5n

2
). Finally,

adding this to the surface-counts established in Lemma 4.5.7 yields the lemma statement.

64

4.5.3 Sample complexity bounds for Gomory mixed integer cuts
In this section, we show how the results from Section 4.5.2 can be used to provide sample com-
plexity bounds for GMI cuts (Definition 4.5.1), parameterized by u ∈ U ⊆ Rm. We assume
there is an unknown, application-specific distribution D over IPs. The learner receives a training
set S ∼ DN of N IPs sampled from this distribution. Formally, let gu(c, A, b) be the size of
the tree B&C builds given the input (c, A, b) after applying the cut defined by u at the root. To
derive our sample complexity guarantee, we bound the pseudo-dimension of G = {gu : u ∈ U}.

So far, α, β have been parameters that do not depend on the input instance c, A, b. Suppose
now that they do: α, β are functions of c, A, b and a parameter vector u (as they are for GMI
cuts). Despite the structure established in the previous section, if α, β can depend on (c, A, b) in
arbitrary ways, one cannot even hope for a finite sample complexity, illustrated by the following
impossibility result.
Theorem 4.5.9. There exist functions αc,A,b : U → Rn and βc,A,b : U → R such that
Pdim ({gu : u ∈ U}) =∞, where U is any set with |U | = |R|.

Proof. For a setX , X<N denotes the set of finite sequences of elements fromX . There is a bijec-
tion between the set of IPs (c, A, b) ∈ I := Rn×Zm×n×Zm and R, so IPs can be uniquely rep-
resented as real numbers (and vice versa). Now, consider the set of all finite sequences of pairs of
IPs and ±1 labels of the form ((c1, A1, b1), ε1), . . . , ((cN , AN , bN), εN), ε1, . . . , εN ∈ {−1, 1},
that is, the set (I × {−1, 1})<N. There is a bijection between this set and (R × {−1, 1})<N,
and in turn there is a bijection between (R × {−1, 1})<N and R. Hence, there exists a bijection
between U and (I × {−1, 1})<N. Fix such a bijection φ : U → (I × {−1, 1})<N, and let
φ−1 : (I × {−1, 1})<N → U denote the inverse of φ, which is well defined and also a bijection.

Let n be odd. For c ∈ R, let IPc ∈ I denote the IP

maximize c
subject to 2x1 + · · ·+ 2xn = n

x ∈ {0, 1}n.
(4.9)

Since n is odd, IPc is infeasible, independent of c. Jeroslow [1974] showed that without the use
of cutting planes or heuristics, branch-and-bound builds a tree of size 2(n−1)/2 before determining
infeasibility and terminating. The objective c is irrelevant, but is important in generating distinct
IPs with this property. Consider the cut x1+ · · ·+xn ≤ ⌊n/2⌋, which is a valid cut for IPc (this is
in fact a Chvátal-Gomory cut [Balcan et al., 2021d]). In particular, since n is odd, x1+· · ·+xn ≤
⌊n/2⌋ =⇒ x1 + · · · + xn ≤ (n − 1)/2 < n/2, so the equality constraint of IPc is violated by
this cut. Thus, the feasible region of the LP relaxation after adding this cut is empty, and branch-
and-bound will terminate immediately at the root (building a tree of size 1). Denote this cut by
(α(−1), β(−1)) = (1, ⌊n/2⌋). On the other hand, let (α(1), β(1)) = (0, 0) be the trivial cut 0 ≤ 0.
Adding this cut to the IP constraints does not change the feasible region, so branch-and-bound
will build a tree of size 2(n−1)/2.

We now define αc,A,b and βc,A,b. Let

(αc,A,b(u), βc,A,b(u)) =


(α(1), β(1)) if ((c, A, b), 1) ∈ φ(u) and ((c, A, b),−1) /∈ φ(u)

(α(−1), β(−1)) if ((c, A, b),−1) ∈ φ(u) and ((c, A, b), 1) /∈ φ(u)

(0, 0) otherwise
.

65

The choice to use (0, 0) in the case that either ((c, A, b), ε) /∈ φ(u) for each ε ∈ {−1, 1},
or ((c, A, b),−1) ∈ φ(u) and ((c, A, b), 1) ∈ φ(u) is arbitrary and unimportant. Now, for
any integer N > 0, constructing a set of N IPs and N thresholds that is shattered is almost
immediate. Let c1, . . . , cN ∈ R be distinct reals, and let 1 < r1, . . . , rN < 2(n−1)/2. Then, the
set {(IPc1 , r1), . . . , (IPcN , rN)} can be shattered. Indeed, given a sign pattern (ε1, . . . , εN) ∈
{−1, 1}N , let

u = φ−1 ((IPc1 , ε1), . . . , (IPcN , εN)) .

Then, if εi = 1, (αIPci
(u), βIPci

(u)) = (α(1), β(1)), so gu(IPci) = 2(n−1)/2 and sign(gu(IPci)−
ri) = 1. If εi = −1, (αIPci

(u), βIPci
(u)) = (α(−1), β(−1)), so gu(IPci) = 1 and sign(gu(IPci)−

ri) = −1. So for any N there is a set of IPs and thresholds that can be shattered, which yields
the theorem statement.

However, in the case of GMI cuts (Def. 4.5.1), we show that the cutting plane coefficients
parameterized by u are highly structured. Combining this structure with our analysis of B&C
allows us to derive polynomial sample complexity bounds. We assume that u ∈ [−U,U]m for
some U > 0.

Let α : [−U,U]m → Rn denote the function taking GMI cut parameters u to the correspond-
ing vector of coefficients determining the resulting cutting plane, and let β : [−U,U]m → R
denote the offset of the resulting cutting plane. So (after multiplying through by 1− f0),

α(u)[i] =

{
fi(1− f0) if fi ≤ f0

f0(1− fi) if fi > f0

and β(u) = f0(1 − f0) (f0 and fi are functions of u, but we suppress this dependence for
readability).

To understand the structure of B&C as a function of GMI cut parameters, we study the
preimages of components C ⊆ Rn+1 under the GMI coefficient maps α : [−U,U]m → Rn,
β : [−U,U]m → R. If C ⊆ Rn+1 (as in Theorem 4.5.8) is such that B&C (as a function
of α, β) is invariant over C, then B&C (as a function of GMI parameter u) is invariant over
D := {u : (α(u), β(u)) ∈ C}. Our key structural insight for GMI cuts is that if C is the
intersection of degree-d polynomial hypersurfaces in Rn+1, then D is the intersection of degree-
2d polynomial hypersurfaces in [−U,U]m. We provide the high-level intuition for this result
below—the formal statements and proofs follow it.

Consider some degree-d polynomial p in variables y1, . . . , yn+1 that defines C, which can be
written as

∑
T⊑[n+1],|T |≤d λT

∏
i∈T yi for some coefficients λT ∈ R, where T ⊑ [n + 1] means

that T is a multiset of [n+ 1]. Evaluating at (α(u), β(u)), we get∑
|T |≤d λT

∏
i∈T∩S\{n+1} fi(1− f0)

∏
i∈T\S\{n+1} f0(1− fi)

∏
i∈T∩{n+1} f0(1− f0).

Next, substitute fi = u⊤ai − ⌊u⊤ai⌋ and f0 = u⊤b − ⌊u⊤b⌋. Restricted to u such that the
floor terms round down to some fixed integers, the above expression is a polynomial in u of
degree ≤ 2d. We run this procedure for every polynomial determining C, for every connected
component C in the partition of Rn+1 established in Theorem 4.5.8 to derive our main structural
result for GMI cuts.

66

Lemma 4.5.10. Consider the family of GMI cuts parameterized by u ∈ [−U,U]m. For any
IP (c, A, b), there are at most O(nU2 ∥A∥1 ∥b∥1) hyperplanes and 2O(n2)(m + 2n)O(n3)τO(n3)

degree-10 polynomial hypersurfaces partitioning [−U,U]m into connected components such that
the B&C tree built after adding the GMI cut defined by u is invariant over all u within a single
component.

To prove this formally, we establish two intermediate lemmas.
Lemma 4.5.11. Consider the family of GMI cuts parameterized by u ∈ [−U,U]m. There is a
set of at most O(nU2 ∥A∥1 ∥b∥1) hyperplanes partitioning [−U,U]m into connected components
such that ⌊u⊤ai⌋, ⌊u⊤b⌋, and 1[fi ≤ f0] are invariant, for every i, within each component.

Proof. We have fi = u⊤ai − ⌊u⊤ai⌋, f0 = u⊤b− ⌊u⊤b⌋, and since u ∈ [−U,U]m, ⌊u⊤ai⌋ ∈
[−U ∥ai∥1 , U ∥ai∥1] and ⌊u⊤b⌋ ∈ [−U ∥b∥1 , U ∥b∥1]. Now, for all i, ki ∈ [−U ∥ai∥1 , U ∥ai∥1]∩
Z and k0 ∈ [−U ∥b∥1 , U ∥b∥1] ∩ Z, put down the hyperplanes defining the two halfspaces

⌊u⊤ai⌋ = ki ⇐⇒ ki ≤ u⊤ai < ki + 1 (4.10)

and the hyperplanes defining the two halfspaces

⌊u⊤b⌋ = k0 ⇐⇒ k0 ≤ u⊤b < k0 + 1. (4.11)

In addition, consider the hyperplane

u⊤ai − ki = u⊤b− k0 (4.12)

for each i. Within any connected component of Rm determined by these hyperplanes, ⌊u⊤ai⌋
and ⌊u⊤b⌋ are constant. Furthermore, 1[fi ≤ f0] is invariant within each connected component,
since if ⌊u⊤ai⌋ = ki and ⌊u⊤b⌋ = k0, fi ≤ f0 ⇐⇒ u⊤ai − ki ≤ u⊤b − k0, which
is the hyperplane given by Equation 4.12. The total number of hyperplanes of type 4.10 is
O(nU ∥A∥1), the total number of hyperplanes of type 4.11 is O(U ∥b∥1), and the total number
of hyperplanes of type 4.12 is nU2 ∥A∥1 ∥b∥1. Summing yields the lemma statement.

The next lemma allows us to transfer the polynomial partition of Rn+1 from Theorem 4.5.8
to a polynomial partition of [−U,U]m, incurring only a factor 2 increase in degree.
Lemma 4.5.12. Let p ∈ R[y1, . . . , yn+1] be a polynomial of degree d. Let D ⊆ [−U,U]m be a
connected component from Lemma 4.5.11. Define q : D → R by q(u) = p(α(u), β(u)). Then q
is a polynomial in u of degree 2d.

Proof. By Lemma 4.5.11, there are integers k0, ki for i ∈ [n] such that ⌊u⊤ai⌋ = ki and
⌊u⊤b⌋ = k0 for all u ∈ D. Also, the set S = {i : fi ≤ f0} is fixed over all u ∈ D.

A degree-d polynomial p in variables y1, . . . , yn+1 can be written as
∑

T⊑[n+1],|T |≤d λT

∏
i∈T yi

for some coefficients λT ∈ R, where T ⊑ [n+1] means that T is a multiset of [n+1]. Evaluating
at (α(u), β(u)), we get∑

|T |≤d

λT

∏
i∈T∩S
i ̸=n+1

fi(1− f0)
∏

i∈T\S
i ̸=n+1

f0(1− fi)
∏
i∈T

i=n+1

f0(1− f0).

Now, fi = u⊤ai − ki and f0 = u⊤b − k0 are linear in u. The sum is over all multisets of size
at most d, so each monomial consists of the product of at most d degree-2 terms of the form
fi(1− f0), f0(1− fi), or f0(1− f0). Thus, deg(q) ≤ 2d, as desired.

67

Proof of Lemma 4.5.10. Let C ⊆ Rn+1 be a connected component in the partition established
in Theorem 4.5.8, so C can be written as the intersection of at most 14n(m + 2n)3n

2
τ 5n

2 poly-
nomial constraints of degree at most 5. Let D ⊆ [−U,U]m be a connected component in the
partition established in Lemma 4.5.11. By Lemma 4.5.12, there are at most 14n(m+ 2n)3n

2
τ 5n

2

polynomials of degree at most 10 partitioning D into connected components such that within
each component, 1[(α(u), β(u)) ∈ C] is invariant. If we consider the overlay of these polyno-
mial surfaces over all components C, we will get a partition of [−U,U]m such that for every C,
1[(α(u), β(u)) ∈ C] is invariant over each connected component of [−U,U]m. Once we have
this we are done, since all u in the same connected component of [−U,U]m will be sent to the
same connected component of Rn+1 by (α(u), β(u)), and thus by Theorem 4.5.8 the behavior
of branch-and-cut will be invariant.

We now tally up the total number of surfaces. The number of connected components C was
given by Warren’s theorem and the Milnor-Thom theorem to be

O(14n(n+1)(m+ 2n)3n
2(n+1)τ 5n

2(n+1)),

so the total number of degree-10 hypersurfaces is 14n(m+2n)3n
2
τ 5n

2 times this quantity, which
yields the lemma statement.

Bounding Pdim({gu : u ∈ [−U,U]m}) is a direct application of the main theorem of Balcan
et al. [2021a] along with standard results bounding the VC dimension of polynomial bound-
aries [Anthony and Bartlett, 1999].
Theorem 4.5.13. The pseudo-dimension of the class of tree-size functions {gu : u ∈ [−U,U]m}
on the domain of IPs with ∥A∥1 ≤ a and ∥b∥1 ≤ b is O (m log(abU) +mn3 log(m+ n) +mn3 log τ) .

We generalize the analysis of this section to multiple GMI cuts at the root of the B&C tree in
the next section. We show that if K GMI cuts are sequentially applied at the root, the resulting
partition of the parameter space is induced by polynomials of degree O(K2).

4.5.4 Extension to multiple cuts
Linear programming sensitivity for multiple constraints

Lemma 4.5.14. Let (c, A, b) be an LP and let M denote the set of its m constraints. Let x∗
LP

and z∗LP denote the optimal solution and its objective value, respectively. For F ⊆ M , let AF ∈
R|F |×n and bF ∈ R|F | denote the restrictions of A and b to F . For k ≤ n, α1, . . . ,αk ∈ Rn,
β1, . . . , βk ∈ R, and F ⊆ M with |F | = n − k, let AF,α1,...,αk

∈ Rn×n denote the matrix
obtained by adding row vectors α1, . . . ,αk to AF and let Ai

F,α1,β1,...,αk,βk
∈ Rn×n be the matrix

AF,α1,...,αk
∈ Rn×n with the ith column replaced by

[
bF β1 · · · βk

]⊤. There is a set of at
most K hyperplanes, nKnmn degree-K polynomial hypersurfaces, and nKnm2n degree-2K
polynomial hypersurfaces partitioning RK(n+1) into connected components such that for each
component C, one of the following holds: either (1) x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) = x∗

LP,
or (2) there is a subset of cuts indexed by ℓ1, . . . , ℓk ∈ [K] and a set of constraints F ⊆ M with
|F | = n− k such that

x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
)

det(AF,αℓ1
,...,αℓk

)

)
,

68

for all (α1, β1, . . . ,αK , βK) ∈ C.

Proof. First, if none of α⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK separate x∗

LP, then

x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) = x∗

LP and z∗LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) = z∗LP.

The set of all such cuts is given by the intersection of halfspaces in RK(n+1) given by

K⋂
j=1

{
(α1, β1, . . . ,αk, βk) ∈ RK(n+1) : α⊤

j x
∗
LP ≤ βj

}
. (4.13)

All other vectors of K cuts contain at least one cut that separates x∗
LP, and those cuts therefore

pass through P = {x ∈ Rn : Ax ≤ b,x ≥ 0}. The new LP optimum is thus achieved at a
vertex created by the cuts that separate x∗

LP. As in the proof of Theorem 4.5.2, we consider all
possible new vertices formed by our set of K cuts. In the case of a single cut, these new vertices
necessarily were on edges of P , but now they may lie on higher dimensional faces.

Consider a subset of k ≤ n cuts that separate x∗
LP. Without loss of generality, denote these

cuts by α⊤
1 x ≤ β1, . . . ,α

⊤
k x ≤ βk. We now establish conditions for these k cuts to “jointly”

form a new vertex of P . Any vertex created by these cuts must lie on a face f of P with
dim(f) = k (in the case that k = n, the relevant face f with dim(f) = n is P itself). Letting
M denote the set of m constraints that define P , each dimension-k face f of P can be identified
with a (potentially empty) subset F ⊂ M of size n − k such that f is precisely the set of all
points x such that

a⊤
i x = bi ∀ i ∈ F

a⊤
i x ≤ bi ∀ i ∈M \ F,

where ai is the ith row of A. Let AF ∈ Rn−k×n denote the restriction of A to only the
rows in F , and let bF ∈ Rn−k denote the entries of b corresponding to the constraints in F .
Consider removing the inequality constraints defining the face. The intersection of the cuts
α⊤

1 x ≤ β1, . . . ,α
⊤
k x ≤ βk and this unbounded surface (if it exists) is precisely the solution to

the system of n linear equations

AFx = bF

α⊤
1 x = β1

...

α⊤
k x = βk.

Let AF,α1,...,αk
∈ Rn×n denote the matrix obtained by adding row vectors α1, . . . ,αk to AF , and

let Ai
F,α1,β1,...,αk,βk

∈ Rn×n denote the matrix AF,α1,...,αk
where the ith column is replaced by

bF
β1
...
βk

 ∈ Rn.

69

By Cramer’s rule, the solution to this system is given by

x =

(
det(A1

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

, . . . ,
det(An

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

)
,

and the value of the objective at this point is

c⊤x =
n∑

i=1

ci ·
det(Ai

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

.

Now, to ensure that the unique intersection point x (1) exists and (2) actually lies on f (or simply
lies in P , in the case that F = ∅) , we stipulate that it satisfies the inequality constraints in M \F .
That is,

n∑
j=1

aij
det(A1

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)
≤ bi (4.14)

for every i ∈ M \ F . If α1, β1 . . . ,αk, βk satisfies any of these constraints, it must be that
det(AF,α1,...,αk

) ̸= 0, which guarantees that AFx = bF ,α
⊤
1 x = β1, . . . ,α

⊤
k x = βk indeed has

a unique solution. Now, det(AF,α1,...,αk
) is a polynomial in α1, . . . ,αk of degree ≤ k, since

it is multilinear in each coefficient of each αℓ, ℓ = 1, . . . , k. Similarly, det(A1
F,α1,β1,...,αk,βk

)
is a polynomial in α1, β1, . . . ,αk, βk of degree ≤ k, again because it is multilinear in each
cut parameter. Hence, the boundary each constraint of the form given by Equation 4.14 is a
polynomial of degree at most k.

The collection of these polynomials for every k, every subset of {α⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤

βK} of size k, and every face of P of dimension k, along with the hyperplanes determining
separation constraints (Equation 4.13), partition RK(n+1) into connected components such that
for all (α1, β1, . . . ,αK , βK) within a given connected component, there is a fixed subset of K
and a fixed set of faces of P such that the cuts with indices in that subset intersect every face in
the set at a common vertex.

Now, consider a single connected component, denoted by C. Let f1, . . . , fℓ denote the faces
intersected by vectors of cuts in C, and let (without loss of generality) 1, . . . , k denote the subset
of cuts that intersect these faces. Let F1, . . . , Fℓ ⊂ M denote the sets of constraints that are
binding at each of these faces, respectively. For each pair fp, fq, consider the surface

n∑
i=1

ci ·
det(Ai

Fp,α1,β1,...,αk,βk
)

det(AFp,α1,...,αk
)

=
n∑

i=1

ci ·
det(Ai

Fq ,α1,β1,...,αk,βk
)

det(AFq ,α1,...,αk
)

,

which can be equivalently written as

n∑
i=1

ci · det(Ai
Fp,α1,β1,...,αk,βk

) det(AFq ,α1,...,αk
) =

n∑
i=1

ci · det(Ai
Fq ,α1,β1,...,αk,βk

) det(AFp,α1,...,αk
).

(4.15)
This is a degree-2k polynomial hypersurface in (α1, β1, . . . ,αK , βK) ∈ RK(n+1). This hyper-
surface is precisely the set of all cut vectors for which the LP objective achieved at the vertex
on face fp is equal to the LP objective value achieved at the vertex on face fq. The collection of

70

these surfaces for each p, q partitions C into further connected components. Within each of these
connected components, the face containing the vertex that maximizes the objective is invariant,
and the subset of cuts passing through that vertex is invariant. If F ⊆ M is the set of binding
constraints representing this face, and ℓ1, . . . , ℓk ∈ [K] represent the subset of cuts intersecting
this face, x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) and z∗LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) have the

closed forms:

x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
)

det(AF,αℓ1
,...,αℓk

)

)
,

and

z∗LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK) =

n∑
i=1

ci ·
det(Ai

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
.

for all (α1, β1, . . . ,αK , βK) within this component. We now count the number of surfaces used
to obtain our decomposition. First, we added K hyperplanes encoding separation constraints
for each of the K cuts (Equation 4.13). Then, for every subset S ⊆ K of size ≤ n, and for
every face F of P with dim(F) = |S|, we first considered at most |M \ F | ≤ m degree-≤ K
polynomial hypersurfaces representing decision boundaries for when cuts in S intersected that
face (Equation 4.14). The number of k-dimensional faces of P is at most

(
m

n−k

)
≤ mn−k ≤

mn−1, so the total number of these hypersurfaces is at most (
(
K
0

)
+ · · · +

(
K
n

)
)mn ≤ nKnmn.

Finally, we considered a degree-2K polynomial hypersurface for every subset of cuts and every
pair of faces with degree equal to the size of the subset, of which there are at most nKn

(
mn

2

)
≤

nKnm2n.

B&C sensitivity with multiple cutting planes

We can similarly derive a multi-cut version of Lemma 4.5.4 that controls x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤

βK , σ) for any set of branching constraints. We use the following notation. Let (c, A, b) be an LP
and let M denote the set of its m constraints. For F ⊆M ∪σ, let AF,σ ∈ R|F |×n and bF,σ ∈ R|F |

denote the restrictions of Aσ and bσ to F . For α1, . . . ,αk ∈ Rn, β1, . . . , βk ∈ R, and F ⊆M∪σ
with |F | = n − k, let AF,α1,...,αk,σ ∈ Rn×n denote the matrix obtained by adding row vectors
α1, . . . ,αk to AF,σ and let Ai

F,α1,β1,...,αk,βk,σ
∈ Rn×n be the matrix AF,α1,...,αk,σ ∈ Rn×n with the

ith column replaced by
[
bF,σ β1 · · · βk

]⊤.
Corollary 4.5.15. Fix an IP (c, A, b). There is a set of at most K hyperplanes, nKn(m +
2n)nτ 3n degree-K polynomial hypersurfaces, and nKn(m + 2n)2nτ 3n degree-2K polynomial
hypersurfaces partitioning RK(n+1) into connected components such that for each component C
and every σ ⊆ BC, one of the following holds: either (1) x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) =

x∗
LP(σ), or (2) there is a subset of cuts indexed by ℓ1, . . . , ℓk ∈ [K] and a set of constraints

F ⊆M ∪ σ with |F | = n− k such that

x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

,σ)

det(AF,αℓ1
,...,αℓk

,σ)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
,σ)

det(AF,αℓ1
,...,αℓk

,σ)

)
,

for all (α1, β1, . . . ,αK , βK) ∈ C.

71

Proof. The exact same reasoning in the proof of Lemma 4.5.14 applies. We still have K hyper-
planes. Now, for each σ, for each subset S ⊆ K with |S| ≤ n, and for every face F of P(σ)
with dim(F) = |S|, we have at most m degree-K polynomial hypersurfaces. The number of
k-dimensional faces of P(σ) is at most

(
m+|σ|
n−k

)
≤ (m + 2n)n−1, so the total number of these

hypersurfaces is at most nKn(m + 2n)nτ 3n. Finally, for every σ, we considered a degree-2K
polynomal hypersurfaces for every subset of cuts and every pair of faces with degree equal to the
size of the subset, of which there are at most nKn(m+ 2n)2nτ 3n, as desired.

We now refine the decomposition obtained in Lemma 4.5.4 so that the branching constraints
added at each step of branch-and-cut are invariant within a region. For ease of exposition, we
assume that branch-and-cut uses a lexicographic variable selection policy. This means that the
variable branched on at each node of the search tree is fixed and given by the lexicographic
ordering x1, . . . , xn. Generalizing the argument to work for other policies, such as the product
scoring rule, can be done as in the single-cut case.
Lemma 4.5.16. Suppose branch-and-cut uses a lexicographic variable selection policy. Then,
there is a set of of at most K hyperplanes, 3n2Kn(m + 2n)nτ 3n degree-K polynomial hyper-
surfaces, and nKn(m + 2n)2nτ 3n degree-2K polynomial hypersurfaces partitioning Rn+1 into
connected components such that within each connected component, the branching constraints
used at every step of branch-and-cut are invariant.

Proof. Fix a connected component C in the decomposition established in Corollary 4.5.15.
Then, by Corollary 4.5.15, for each σ, either x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) = x∗

LP(σ)
or there exists cuts (without less of generality) labeled by indices 1, . . . , k ∈ [K] and there exists
F ⊆M ∪ σ such that

x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ)[i] =

det(Ai
F,α1,β1,...,αk,βk,σ

)

det(AF,α1,...,αk,σ)

for all (α, β) ∈ C and all i ∈ [n]. Now, if we are at a stage in the branch-and-cut tree where σ is
the list of branching constraints added so far, and the ith variable is being branched on next, the
two constraints generated are

xi ≤ ⌊x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ)[i]⌋ and xi ≥

⌈
x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ)[i]

⌉
,

respectively. If C is a component where x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) = x∗

LP(σ), then
there is nothing more to do, since the branching constraints at that point are trivially invariant
over (α1, β1, . . . ,αK , βK) ∈ C. Otherwise, in order to further decompose C such that the right-
hand-side of these constraints are invariant for every σ and every i = 1, . . . , n, we add the two
decision boundaries given by

k ≤
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)
≤ k + 1

for every i, σ, and every integer k = 0, . . . , τ − 1, where τ = ⌈maxx∈P ∥x∥∞⌉. This ensures
that within every connected component of C induced by these boundaries (degree-K polynomial

72

hypersurfaces), ⌊
x∗
LP(α

⊤x ≤ β, σ)[i]
⌋
=

⌊
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)

⌋
and ⌈

x∗
LP(α

⊤x ≤ β, σ)[i]
⌉
=

⌈
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)

⌉
are invariant, so the branching constraints added by, for example, a lexicographic branching
rule, are invariant. For a fixed σ, there are two hypersurfaces for every subset S ⊆ [K], every
F ⊆ M ∪ σ corresponding to a |S|-dimensional face of P(σ), and every i = 1, . . . , n, for a
total of at most 2n2Kn

(
m+|σ|
|S|

)
≤ 2n2Kn(m+ 2n)n. Summing over all reduced σ, we get a total

of 2n2Kn(m + 2n)nτ 3n hypersurfaces. Adding these hypersurfaces to the set of hypersurfaces
established in Corollary 4.5.15 yields the lemma statement.

Now, as in the single-cut case, we consider the constraints that ensure that all cuts are valid.
Let V ⊆ RK(n+1) denote the set of all vectors of valid K cuts. As before, V is a polyhedron,
since we may write

V =
K⋂
k=1

⋂
xIH∈PIH

{
(α1, β1, . . . ,αK , βk) ∈ RK(n+1) : α⊤

k xIH ≤ βk

}
.

We now refine our decomposition further to control the integrality of the various LP solutions
at each node of branch-and-cut.
Lemma 4.5.17. Given an IP (c, A, b), there is a set of at most 2Kτn hyperplanes, 4n2Kn(m+
2n)nτ 4n degree-K polynomial hypersurfaces, and nKn(m + 2n)2nτ 3n degree-2K polynomial
hypersurfaces partitioning RK(n+1) into connected components such that for each component C,
and each σ ⊆ BC,

1
[
x∗
LP

(
α⊤

1 x ≤ β1, . . . ,α
⊤
Kx ≤ βK , σ

)
∈ Zn

]
is invariant for all (α1, β1, . . . ,αK , βK) ∈ C.

Proof. Fix a connected component C in the decomposition that includes the facets defining V
and the surfaces obtained in Lemma 4.5.16. For all σ ∈ BC, xI ∈ PI, and i = 1, . . . , n, consider
the surface

x∗
LP

(
α⊤

1 x ≤ β1, . . . ,α
⊤
Kx ≤ βK , σ

)
[i] = xI[i]. (4.16)

This surface is a polynomial hypersurface of degree at most K, due to Corollary 4.5.15. Clearly,
within any connected component of C induced by these hyperplanes, for every σ and xI ∈ PI,
1[x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) = xI] is invariant. Finally, if x∗

LP(α
⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤

βK , σ) ∈ Zn for some K cuts α⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK within a given connected com-

ponent, x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) = xI for some xI ∈ PIH(σ) ⊆ PI, which

means that x∗
LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
Kx ≤ βK , σ) = xI ∈ Zn for all vectors of K cuts α⊤

1 x ≤
β1, . . . ,α

⊤
Kx ≤ βK in that connected component.

We now count the number of hyperplanes given by Equation 4.16. For each σ, there are
nKn possible subsets of cut indices and at most (m + 2n)n−1 binding face constraints F ⊆

73

M ∪ σ defining the formula of Corollary 4.5.15. For each subset-face pair, there are n|PI| ≤
nτn degree-K polynomial hypersurfaces given by Equation 4.16. So the total number of such
hypersurfaces over all σ is at most τ 3nn2Kn(m + 2n)n−1τn. The number of facets defining V
is at most K|PI| ≤ Kτn. Adding these to the counts obtained in Lemma 4.5.16 yields the final
tallies in the lemma statement.

At this point, as in the single-cut case, if the bounding aspect of branch-and-cut is suppressed,
our decomposition yields connected components over which the branch-and-cut tree built is in-
variant. We now prove our main structural theorem for B&C as a function of multiple cutting
planes at the root.
Theorem 4.5.18. Given an IP (c, A, b), there is a set of at most O(12nn2nK2n2

(m+2n)2n
2
τ 5n

2
)

polynomial hypersurfaces of degree at most 2K partitioning RK(n+1) into connected components
such that the branch-and-cut tree built after adding the K cuts α⊤

1 x ≤ β1, . . . ,α
⊤
k x ≤ βk at

the root is invariant over all (α1, β1, . . . ,αK , βK) within a given component. In particular,
fc,A,b(α1, β1, . . . ,αK , βK) is invariant over each connected component.

Proof. Fix a connected component C in the decomposition induced by the set of hyperplanes,
degree-K hypersurfaces, and degree-2K hypersurfaces established in Lemma 4.5.17. Let

Q1, . . . , Qi1 , I1, Qi1+1, . . . , Qi2 , I2, Qi2+1, . . . (4.17)

denote the nodes of the tree branch-and-cut creates, in order of exploration, under the assumption
that a node is pruned if and only if either the LP at that node is infeasible or the LP optimal
solution is integral (so the “bounding” of branch-and-bound is suppressed). Here, a node is
identified by the list σ of branching constraints added to the input IP. Nodes labeled by Q are
either infeasible or have fractional LP optimal solutions. Nodes labeled by I have integral LP
optimal solutions and are candidates for the incumbent integral solution at the point they are
encountered. (The nodes are functions of α1, β1, . . . ,αK , βK , as are the indices i1, i2,) By
Lemma 4.5.17, this ordered list of nodes is invariant for all (α1, β1, . . . ,αK , βk) ∈ C.

Now, given an node index ℓ, let I(ℓ) denote the incumbent node with the highest objective
value encountered up until the ℓth node searched by B&C, and let z(I(ℓ)) denote its objective
value. For each node Qℓ, let σℓ denote the branching constraints added to arrive at node Qℓ. The
hyperplane

z∗LP
(
α⊤

1 x ≤ β1, . . . ,α
⊤
Kx ≤ βK , σℓ

)
= z(I(ℓ)) (4.18)

(which is a hyperplane due to Corollary 4.5.15) partitions C into two subregions. In one sub-
region, z∗LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
k x ≤ βk, σℓ) ≤ z(I(ℓ)), that is, the objective value of the LP

optimal solution is no greater than the objective value of the current incumbent integer solution,
and so the subtree rooted at Qℓ is pruned. In the other subregion, z∗LP(α

⊤
1 x ≤ β1, . . . ,α

⊤
k x ≤

βk, σℓ) > z(I(ℓ)), and Qℓ is branched on further. Therefore, within each connected component of
C induced by all hyperplanes given by Equation 4.18 for all ℓ, the set of node within the list (4.17)
that are pruned is invariant. Combined with the surfaces established in Lemma 4.5.17, these hy-
perplanes partition RK(n+1) into connected components such that as (α1, β1 . . . ,αK , βK) varies
within a given component, the tree built by branch-and-cut is invariant.

Finally, we count the total number of surfaces inducing this partition. Unlike the counting
stages of the previous lemmas, we will first have to count the number of connected components

74

induced by the surfaces established in Lemma 4.5.17. This is because the ordered list of nodes
explored by branch-and-cut (4.17) can be different across each component, and the hyperplanes
given by Equation 4.18 depend on this list. From Lemma 4.5.17 we have 6n2Kn(m+ 2n)2nτ 4n

polynomial hypersurfaces of degree ≤ 2K. The set of all (α1, β1, . . .αK , βk) ∈ RK(n+1) such
that (α1, β1, . . . ,αK , βK) lies on the boundary of any of these surfaces is precisely the zero set of
the product of all polynomials defining these surfaces. Denote this product polynomial by p. The
degree of the product polynomial is the sum of the degrees of 6n2Kn(m+2n)2nτ 4n polynomials
of degree ≤ 2K, which is at most 2K · 6Kn2Kn(m + 2n)2nτ 4n = 12n2Kn+2(m + 2n)2nτ 4n.
By Warren’s theorem, the number of connected components of Rn+1 \ {(α, β) : p(α, β) =
0} is O((12n2Kn+2(m + 2n)2nτ 4n)n−1), and by the Milnor-Thom theorem, the number of
connected components of {(α, β) : p(α, β) = 0} is O((12n2Kn+2(m + 2n)2nτ 4n)n−1) as
well. So, the number of connected components induced by the surfaces in Lemma 4.5.17 is
O(12nn2nK2n2

(m+2n)2n
2
τ 4n

2
). For every connected component C in Lemma 4.5.17, the closed

form of z∗LP(α
⊤x ≤ β, σℓ) is already determined due to Corollary 4.5.15, and so the number of

hyperplanes given by Equation 4.18 is at most the number of possible σ ⊆ BC, which is at
most τ 3n. So across all connected components C, the total number of hyperplanes given by
Equation 4.18 is O(12nn2nK2n2

(m + 2n)2n
2
τ 5n

2
). Finally, adding this to the surface-counts es-

tablished in Lemma 4.5.17 yields the theorem statement.

Multiple GMI cuts at the root

In this section we extend our results to allow for multiple GMI cuts at the root of the B&C tree.
These cuts can be added simultaneously, sequentially, or in rounds. If GMI cuts u1, u2 are added
simultaneously, both of them have the same dimension and are defined in the usual way. If GMI
cuts u1, u2 are added sequentially, u2 has one more entry than u1. This is because when cuts
are added sequentially, the LP relaxation is re-solved after the addition of the first cut, and the
second cut has a multiplier for all original constraints as well as for the first cut (this ensures that
the second cut can be chosen in a more informed manner). If K cuts are made at the root, they
can be added in sequential rounds of simultaneous cuts. In the following discussion, we focus on
the case where all K cuts are added sequentially—the other cases can be viewed as instantiations
of this (as in Section 4.3).

To prove an analogous result for multiple GMI cuts (in sequence, that is, each successive
GMI cut has one more parameter than the previous), we combine the reasoning used in the
single-GMI-cut case with some technical observations in Section 4.3.
Lemma 4.5.19. Consider the family of K sequential GMI cuts parameterized by

u1 ∈ [−U,U]m,u2 ∈ [−U,U]m+1, . . . ,uK ∈ [−U,U]m+K−1.

For any IP (c, A, b), there are at most

O
(
nK(1 + U)2K ∥A∥1 ∥b∥1

)
degree-K polynomial hypersurfaces and

2O(n2)KO(n3)(m+ 2n)O(n3)τO(n3)

75

degree-4K2 polynomial hypersurfaces partitioning [−U,U]m × · · · × [−U,U]m+K−1 connected
components such that the B&C tree built after sequentially adding the GMI cuts defined by
u1, . . . ,uK is invariant over all (u1, . . . ,uK) within a single component.

Proof. We start with the setup used in Section 4.3 to prove similar results for sequential Chvátal-
Gomory cuts. Let a1, . . . ,an ∈ Rm be the columns of A. We define the following augmented
columns ã1

i ∈ Rm, . . . , ãK
i ∈ Rm+K−1 for each i ∈ [n], and the augmented constraint vectors

b̃1 ∈ Rm, . . . , b̃K ∈ Rm+K−1 via the following recurrences:

ã1
i = ai

ãk
i =

[
ãk−1
i

u⊤
k−1ã

k−1
i

]
and

b̃1 = b

b̃k =

[
b̃k−1

u⊤
k−1b̃

k−1

]

for k = 2, . . . , K. In other words, ãk
i is the ith column of the constraint matrix of the IP and b̃k

is the constraint vector after applying cuts u1, . . . ,uk−1. A straightforward induction shows that
for each k ∈ [K], ⌊

u⊤
k ã

k
i

⌋
∈
[
− (1 + U)k ∥ai∥1 , (1 + U)k ∥ai∥1

]
and ⌊

u⊤
k b̃

k
⌋
∈
[
− (1 + U)k ∥b∥1 , (1 + U)k ∥b∥1

]
.

Now, as in the single-GMI-cut setting, consider the surfaces⌊
u⊤

k ã
k
i

⌋
= ℓi ⇐⇒ ℓi ≤ u⊤

k ã
k
i < ℓi + 1 (4.19)

and ⌊
u⊤

k b̃
k
⌋
= ℓ0 ⇐⇒ ℓi ≤ u⊤

k b̃
k < ℓ0 + 1 (4.20)

for every i, k, and every integer ℓi ∈ [−(1 + U)k ∥ai∥1 , (1 + U)k ∥ai∥1] ∩ Z and every integer
ℓ0 ∈ [−(1 + U)k ∥b∥1 , (1 + U)k ∥b∥1] ∩ Z. In addition, consider the surfaces

u⊤
k ã

k
i − ℓi = u⊤

k b̃
k − ℓ0 (4.21)

for each i, k, ℓi, ℓ0. As observed in Section 4.3, u⊤
k ã

k
i is a polynomial in

u1[1], . . . ,u1[m],u2[1], . . . ,u2[m+ 1], . . . ,uk[1], . . . ,uk[m+ k − 1]

of degree at most k (as is u⊤
k b̃

k), so surfaces 4.19, 4.20, and 4.21 are all degree-K polynomial
hypersurfaces for all i, k. Within any connected component of [−U,U]m × · · · × [−U,U]m+K−1

76

induced by these hypersurfaces, ⌊u⊤
k ã

k
i ⌋ and ⌊u⊤

k b̃
k⌋ are constant. Furthermore 1[fk

i ≤ fk
0] is

invariant for every i, k, where fk
i = u⊤

k ã
k
i − ⌊u⊤

k ã
k
i ⌋ and fk

0 = u⊤
k b̃

k − ⌊u⊤
k b̃

k⌋.
Now, fix a connected component D ⊆ [−U,U]m×· · ·× [−U,U]m+K−1 induced by the above

hypersurfaces, and let C ⊆ RK(n+1) be the intersection of q polynomial inequalities of degree at
most d. Consider a single degree-d polynomial inequality in K(n+1) variables y1, . . . , yK(n+1),
which can be written as∑

T⊑[K(n+1)]
|T |≤d

λT

∏
j∈T

yj =
∑

T1,...,TK⊑[n+1]
|T1|+···+|TK |≤d

λT1,...,TK

∏
j1∈T1

yj1 · · ·
∏

jK∈TK

yjK ≤ γ.

Now, the sets S1, . . . , SK defined by Sk = {i : fk
i ≤ fk

0 } are fixed within D, so we can write this
as ∑

T1,...,TK⊑[n+1]
|T1|+···+|TK |≤d

λT1,...,TK

K∏
k=1

[∏
j∈Tk∩Sk
j ̸=n+1

fk
j (1− fk

0)
∏

j∈Tk\Sk
j ̸=n+1

fk
0 (1− fk

j)
∏
j∈Tk
j=n+1

fk
0 (1− fk

0)

]
≤ γ.

We have that fk
j and fk

0 are degree-k polynomials in u1, . . . ,uk. Since the sum is over all
multisets T1, . . . , TK such that |T1| + · · · + |TK | ≤ d, there are at most d terms across the
products, each of the form fk

j (1− f0)
k, fk

0 (1− fk
j), or fk

0 (1− f0)
k. Therefore, the left-hand-side

is a polynomial of degree at most 2dK, and if C ⊆ RK(n+1) is the intersection of q polynomial
inequalities each of degree at most d, the set

{(u1, . . . ,uK) ∈ D : (α (u1, . . . ,uK) , β (u1, . . . ,uK)) ∈ C} ⊆ [−U,U]m×· · ·×[−U,U]m+K−1

can be expressed as the intersection of q degree-2dK polynomial inequalities.
To finish, we run this process for every connected component C ⊆ RK(n+1) in the partition es-

tablished by Theorem 4.5.18. This partition consists of O(12nn2nK2n2
(m+2n)2n

2
τ 5n

2
) degree-

2K polynomials over RK(n+1). By Warren’s theorem and the Milnor-Thom theorem, these
polynomials partition RK(n+1) into O(12n(n+1)n2n(n+1)K2n2(n+1)(m+2n)2n

2(n+1)τ 5n
2(n+1)) con-

nected components. Running the above argument for each of these connected components of
RK(n+1) yields a total of

O
(
12n(n+1)n2n(n+1)K2n2(n+1)(m+ 2n)2n

2(n+1)τ 5n
2(n+1)

)
·O
(
12nn2nK2n2

(m+ 2n)2n
2

τ 5n
2
)

= 2O(n2)KO(n3)(m+ 2n)O(n3)τO(n3)

polynomials of degree 4K2. Finally, we count the surfaces of the form (4.19), (4.20), and (4.21).
The total number of degree-K polynomials of type 4.19 is at most O(nK(1 + U)K ∥A∥1), the
total number of degree-k polynomials of type 4.20 is O(K(1 +U)K ∥b∥1), and the total number
of degree-K polynomials of type 4.21 is O(nK(1 + U)2K ∥A∥1 ∥b∥). Summing these counts
yields the desired number of surfaces in the lemma statement.

In any connected component of [−U,U]m determined by these surfaces, 1[(α(u), β(u)) ∈
C] is invariant for every connected component C ⊆ RK(n+1) in the partition of RK(n+1) estab-
lished in Theorem 4.5.18. This means that the tree built by branch-and-cut is invariant, which
concludes the proof.

77

Finally, applying the main result of Balcan et al. [2021a] to Lemma 4.5.19, we get the fol-
lowing pseudo-dimension bound for the class of K sequential GMI cuts at the root of the B&C
tree.
Theorem 4.5.20. For

u1 ∈ [−U,U]m,u2 ∈ [−U,U]m+1, . . . ,uK ∈ [−U,U]m+K−1,

let gu1,...,uK
(c, A, b) denote the number of nodes in the tree B&C builds given the input (c, A, b)

after sequentially applying the GMI cuts defined by u1, . . . ,uK at the root. The pseudo-dimension
of the set of functions{

gu1,...,uK
: (u1, . . . ,uK) ∈ [−U,U]m × · · · × [−U,U]m+K−1

}
on the domain of IPs with ∥A∥1 ≤ a and ∥b∥1 ≤ b is

O
(
mK3 logU +mn3K2 log(mnKτ) +mK2 log(ab)

)
.

78

Part II

Mechanism Design with Side Information
with Applications to Combinatorial

Markets

79

Chapter 5

Multidimensional Mechanism Design with
Side Information

Mechanism design is a high-impact branch of economics, computer science, and operations
research that studies the implementation of socially desirable outcomes among strategic self-
interested agents. Major real-world use cases include combinatorial auctions [Cramton et al.,
2006] (e.g., for strategic sourcing [Sandholm, 2013, Hohner et al., 2003] and radio spectrum
auctions [Cramton, 2013, Bichler and Goeree, 2017, Leyton-Brown et al., 2017]), matching mar-
kets [Roth, 2018] (e.g., for housing allocation and ridesharing), project fundraisers, and many
more. The two most commonly studied objectives in mechanism design are welfare and revenue.
In many settings, welfare maximization, or efficiency, is achieved by the classic Vickrey-Clarke-
Groves (VCG) mechanism [Vickrey, 1961, Clarke, 1971, Groves, 1973]. Revenue maximization
is a significantly more elusive problem that is only understood in very special cases. The seminal
work of Myerson [1981] characterized the revenue-optimal mechanism for the sale of a single
item in the Bayesian setting, but it is not even known how to optimally sell two items. It is known
that welfare and revenue are generally at odds and optimizing one can come at a great expense
of the other [Ausubel and Milgrom, 2006, Abhishek and Hajek, 2010, Anshelevich et al., 2016,
Kleinberg and Yuan, 2013, Diakonikolas et al., 2012].

In this chapter we study how side information (or predictions) about the agents can help with
bicriteria optimization of both welfare and revenue. Side information can come from a variety
of sources that are abundantly available in practice such as predictions from a machine-learning
model trained on historical agent data, advice from domain experts, or even the mechanism de-
signer’s own gut instinct. Machine learning approaches that exploit the proliferation of agent
data have in particular witnessed a great deal of success both in theory [Conitzer and Sand-
holm, 2002, Likhodedov and Sandholm, 2004, Morgenstern and Roughgarden, 2016, Medina
and Vassilvitskii, 2017, Balcan et al., 2018d, 2005] and in practice [Edelman et al., 2007, Sand-
holm, 2007, Walsh et al., 2008, Dütting et al., 2019, Sandholm, 2013]. In contrast to the typical
Bayesian approach to mechanism design that views side information through the lens of a prior
distribution over agents, we adopt a prior-free perspective that makes no assumptions on the
correctness, accuracy, or source of the side information (though we show how to apply the tech-
niques developed in this chapter to that setting as well). A nascent line of work (part of a larger
agenda on learning-augmented algorithms [Mitzenmacher and Vassilvitskii, 2022]) has begun

81

to examine the challenge of improving the performance of classical mechanisms with strategic
participants when the designer has access to predictions about the agents, but only for fairly spe-
cific problem settings [Xu and Lu, 2022, Banerjee et al., 2022, Balkanski et al., 2023, Gkatzelis
et al., 2022, Agrawal et al., 2022]. Algorithm and mechanism design with predictions takes a be-
yond worst case perspective on performance analysis, the primary motivation being the access to
machine-learning predictions about the problem instance that can greatly improve performance
(e.g., run-time, memory, revenue, welfare, fairness, etc.) beyond what is possible in the worst
case. This is in contrast to the worst-case perspective that has been traditional in classical algo-
rithm design and theoretical computer science. We contribute to this budding area of mechanism
design with predictions (also called learning-augmented mechanism design) with a new general
side-information-dependent mechanism for a wide swath of multidimensional mechanism design
problems that aim for high social welfare and high revenue.

Here we provide a few examples of the forms of side information we consider in various
multidimensional mechanism design scenarios. A formal description of the model is in Sec-
tion 10.2.1. (1) An auction designer sets a bidder-specific item reserve price of $10 based on
historical knowledge that the bidder is a high-spending bidder and the observation that all other
bids received for that item are tightly clustered around $10. (2) A real-estate agent believes that
a particular buyer values a high-rise condominium with a city view three times more than one
on the first floor. Alternately, the seller might know for a fact that the buyer values the first prop-
erty three times more than the second based on set factors such as value per square foot. (3)
A homeowner association is raising funds for the construction of a new swimming pool within
a townhome complex. Based on the fact that a particular resident has a family with children,
the association estimates that this resident is likely willing to contribute at least $300 if the pool
is opened within a block of the resident’s house but only $100 if outside a two-block radius.
These are all examples of side information available to the mechanism designer that may or may
not be useful or accurate; we include many more such examples throughout to reinforce central
concepts. Our methodology allows us to derive welfare and revenue guarantees under different
assumptions on the veracity of the side information. Our model of side information involves
a general and flexible language wherein nearly any claim of the form “the joint type profile of
the agents satisfies property P” can be expressed and meaningfully used. We study some other
forms of side information as well which we describe further next.

Our contributions

Our main contribution is a versatile tunable mechanism that integrates side information about
agent types with the bicriteria goal of simultaneously optimizing welfare and revenue. Tradition-
ally it is known that welfare and revenue are at odds and maximizing one objective comes at the
expense of the other. Our results show that side information can help mitigate this difficulty.

Prediction model, type spaces, and weakest-type VCG In Section 10.2.1, we introduce our
model of predictors and formally define the components of multidimensional mechanism design.
The abstraction of multidimensional mechanism design is a rich language that allows our theory
to apply to many real-world settings including combinatorial auctions, matching markets, project

82

fundraisers, and more—we expand on this list of examples further in Section 10.2.1. Our model
of predictions is highly general and flexible, and it captures a number of information and knowl-
edge formats in these diverse settings. One key aspect here is that the information conveyed
about an agent can depend on the revealed types of all other agents. For example, a landowner
who wants to sell mineral rights via an auction might not know the true market values of the
natural resources present in his land, but might expect bids to be clustered around a high value or
a low value based on the bidders’ (who represent entities with domain expertise in, say, mining
for rare materials) assessment of the resource quality. Then, based on a subset of revealed bids,
the landowner can set informed reserve prices for other bidders to increase his revenue.

We then discuss an improvement to the VCG mechanism we call the weakest-type VCG
mechanism (Section 5.1.1). While vanilla VCG charges an agent her externality measured rela-
tive to the welfare achievable by her non-participation, weakest-type VCG charges an agent her
externality relative to the welfare achievable by the weakest type consistent with what the mecha-
nism designer already knows about that agent. This idea is due to Krishna and Perry [1998], who
showed that a Bayesian version of the weakest-type mechanism is revenue optimal among all ef-
ficient, Bayes incentive compatible, and Bayes individually rational mechanisms (assuming the
mechanism designer has access to the prior distribution from which agents’ values are drawn).
Our weakest-type VCG mechanism adapts Krishna and Perry’s mechanism to a prior-free setting
and allows for a more general model of agent type spaces, and we prove that it is revenue optimal
subject to efficiency, (ex-post) incentive compatibility, and (ex-post) individual rationality.

We show how the payment scheme implemented by the weakest-type VCG mechanism lends
a natural interpretation in terms of information rents for the agents. Indeed, vanilla VCG is
equivalent to a pay-as-bid/first-price payment scheme with agent discounts equal to the welfare
improvement they create for the system. Weakest-type VCG is equivalent to a pay-as-bid scheme
with agent discounts equal to the welfare improvement they create for the system over the welfare
created by their weakest type. That difference in welfare is precisely an agent’s information rent:
the less private information she holds to “distinguish herself” from the weakest type, the smaller
her discount.

Measuring prediction quality and weakest type computation In Section 5.2 we devise an
appropriate error measure to quantify the quality of a prediction that is intimately connected
to the weakest-type mechanism described above—it is precisely the delta in welfare created
between an agent’s true type and an agent’s weakest type that is consistent with the information
posited by the predictor (the key difference in the prediction setting is that the information that a
prediction conveys about an agent need not be accurate). Remarkably, the ability of a prediction
to boost revenue in our framework is largely unrelated to obvious measures of goodness. For
example, one might expect that a good prediction should say something correct about an agent’s
true type—if it claims that an agent’s type/valuation satisfies property P we would expect that her
true type ought to satisfy property P for it to be a useful prediction. Rather counter-intuitively,
even if the true type does not satisfy property P our framework can gain meaningful revenue
mileage from that prediction. Our error measure completely characterizes the set of predictions
that extract a given payment.

We also briefly discuss the computational complexity of finding weakest types (Section 5.2.1).

83

We show that weakest type computation can be formulated as a linear program with size equal
to the size of the allocation space, which implies that weakest types can be found in time poly-
nomial in the parameters defining the mechanism design environment. In environments where
the size of the allocation space is prohibitively large (e.g., in a combinatorial auction there are
(n + 1)m possible allocations of n items to m bidders and the seller), we show that the solution
to the linear program can nonetheless be computed with polynomially many queries to an oracle
for computing efficient allocations.

Prediction-augmented mechanisms and guarantees In Section 5.3.1 we present our main
mechanism. It uses the information output by the predictors within the weakest-type VCG mech-
anism, but modifies that information via two tunable parameters. The first parameter allows for
an initial modification to make the initial prediction more aggressive or more conservative. The
second parameter controls a random relaxation of the modified prediction and serves to smooth
out the behavior of the mechanism—we concretely demonstrate this via payment plots.

We prove that our mechanism achieves strong welfare and revenue guarantees that are param-
eterized by errors in the predictions and the quality of the parameter tuning. When its parameters
are tuned well it achieves the efficient welfare OPT and revenue competitive with OPT, and its
performance degrades gradually as both the tuning worsens and the quality of the predictions
worsen. For a fixed default (untuned) parameter choice, it achieves welfare OPT and revenue
≈ OPT

log(∆VCG)
when the predictions are “perfect” (where ∆VCG is a problem-dependent constant),

and its performance degrades gradually as the quality of the predictions worsen (whereas naı̈ve
approaches suffer from huge discontinuous drops in performance). Prior-free efficient welfare
OPT, or total social surplus, is the strongest possible benchmark for both welfare and rev-
enue. We show that simplistic approaches that solely optimize for the consistency and robustness
desiderata that have been studied in the mechanism design (and algorithm design more broadly)
with predictions literature are brittle and overly sensitive to prediction errors. Our mechanism
provides a more flexible, general, and robust alternative.

Other forms of side information In Section 5.4 we apply the weakest-type mechanism to
three other formats of side information. First, in Section 5.4.1, we describe a more general
model of predictions that can express arbitrary degrees of uncertainty over an agent’s type. Here,
we generalize the main randomized mechanism described previously. Second, in Section 5.4.2,
we derive new results in a setting where each agent’s type is determined by a constant number
of parameters. Specifically, agent types lie on constant-dimensional subspaces (of the poten-
tially high-dimensional ambient type space) that are known to the mechanism designer (this is
markedly different from our model of predictions and should be viewed as a restriction on the
agent’s type space itself). For example, a real-estate agent might infer a buyers’ relative property
values based on value per square foot. When each agent’s true type is known to lie in a particular
k-dimensional subspace of the ambient type space, we modify the weakest-type mechanism by
choosing weakest types randomly from a careful discretization of the subspace, to obtain revenue
at least Ω(OPT /k(logH)k) while simultaneously guaranteeing welfare at least OPT / logH ,
where H is an upper bound on any agent’s value. Third, in Section 5.4.3, we consider a textbook
multidimensional mechanism design setup where the side information is in the form of a known

84

prior distribution over agent types. Here, we show that the revenue-optimal (with no constraints
other than incentive compatibility and individual rationality) Groves mechanism can be found
by solving a separate single-parameter optimization problem for each agent. The optimization
involves each agent’s weakest type. Interestingly, our formulation recovers the optimal single-
item auction of Myerson [1981] in a special case despite the fact that it is not globally revenue
optimal in general.

Extension to affine-maximizer mechanisms Finally, we show how the weakest-type frame-
work can be extended beyond VCG to the class of affine-maximizer (AM) mechanisms [Roberts,
1979]. We describe at least two attractive uses of a weakest-type AM in place of weakest-
type VCG. First, it is well-known that in settings where agent types are drawn from a prior
distribution, AMs can generate significantly more revenue than VCG. For example, work on
sample-based automated mechanism design [Sandholm and Likhodedov, 2015, Balcan et al.,
2018d, Curry et al., 2023] has shown that high-revenue AM parameters can be learned from
data. Our techniques can then be appended as a post-processor to further improve the revenue of
an already-tuned AM. Second, in many application domains it might make more sense to imple-
ment an allocation that maximizes a weighted version of welfare. For example, the mechanism
designer might want to prioritize allocations that adequately reward small or minority-owned
business (captured by multiplicative bidder weights). As another example, an auction designer
might derive value from keeping some of the items for himself or from offering items for other
uses outside the auction. In such cases, allocations that leave some items unsold might be pri-
oritized if no bidder values those items competitively (captured by additive allocation boosts).
We show how our main results extend to AMs, with appropriately redefined welfare and revenue
benchmarks.

Related work

We survey related work and discuss work subsequent to our initial conference publication [Bal-
can et al., 2023].

Side information in mechanism design Various mechanism design settings have been studied
under the assumption that some form of public side information is available. Medina and Vassil-
vitskii [2017] study single-item (unlimited supply) single-bidder posted-price auctions with bid
predictions. Devanur et al. [2016] study the sample complexity of (single-parameter) auctions
when the mechanism designer receives a distinguishing signal for each bidder. More generally,
the active field of algorithms with predictions aims to improve the quality of classical algorithms
when machine-learning predictions about the solution are available [Mitzenmacher and Vassil-
vitskii, 2022]. There have been recent explicit connections of this paradigm to settings with
strategic agents [Agrawal et al., 2022, Gkatzelis et al., 2022, Balkanski et al., 2023, Banerjee
et al., 2022]. Most related to our work, Xu and Lu [2022] study auctions for the sale of a (single
copy of a) single item when the mechanism designer receives point predictions on the bidders’
values. Unlike our approach, they focus on deterministic modifications of a second-price auction.
An important drawback of determinism is that revenue guarantees do not decay continuously as

85

prediction quality degrades. For agents with values in [1, H] there is an error threshold after
which, in the worst case, only a 1/H-fraction of revenue can be guaranteed (a vacuous guar-
antee not even competitive with a vanilla second-price auction). Xu and Lu [2022] prove that
such a revenue drop is unavoidable by deterministic mechanisms. Finally, our setting is distinct
from, but similar to in spirit, work that uses public attributes for market segmentation to improve
revenue [Balcan et al., 2005, 2020c].

Welfare-revenue tradeoffs in auctions Welfare and revenue relationships in Bayesian auc-
tions have been widely studied since the seminal work of Bulow and Klemperer [1996]. Welfare-
revenue tradeoffs for second-price auctions with reserve prices in the single item setting have
been quantified [Hartline and Roughgarden, 2009, Daskalakis and Pierrakos, 2011], with some
approximate understanding of the Pareto frontier [Diakonikolas et al., 2012]. Anshelevich et al.
[2016] study welfare-revenue tradeoffs in large markets, Aggarwal et al. [2009] study the effi-
ciency of revenue-optimal mechanisms, and Abhishek and Hajek [2010] study the efficiency loss
of revenue-optimal mechanisms.

Weakest types The idea behind the weakest-type VCG mechanism is due to Krishna and Perry
[1998] but the notion of a “worst-off” type was studied before that in the context of bilateral
(and more general) trade by Myerson and Satterthwaite [1983] and Cramton et al. [1987]. That
study identified the worst-off type in a trading environment and used that characterization to
characterize individually rational trading mechanisms—the connection to individual rationality
is similar to the one we draw in Theorem 5.1.1. The improvement to VCG via weakest types as
first established by Krishna and Perry [1998] does not appear to have been further explored since
then.

Distribution-free agent type models Our primary model of predictions is distribution free
in that a prediction puts forward a postulate that an agent’s true type belongs to some set, but
conveys no further distributional information over that set. Such models of agent types have
been previously studied, though in different contexts, by Hyafil and Boutilier [2004] for min-
imax optimal automated mechanism design, Holzman et al. [2004] to understand equilibria in
combinatorial auctions, and Chiesa et al. [2015] for agents who have uncertainty about their own
private types.

Constant-parameter mechanism design Revenue-optimal mechanism design for settings where
each agent’s type space is of a constant dimension has been studied previously in certain specific
settings. Single-parameter mechanism design is a well-studied topic dating back to the seminal
work of Myerson [1981], who (1) characterized the set of all truthful allocation rules and (2)
derived the Bayesian optimal auction based on virtual values (a quantity that is highly depen-
dent on knowledge of the agents’ value distributions). Kleinberg and Yuan [2013] prove revenue
guarantees for a variety of single-parameter settings that depend on distributional parameters.
Financially constrained buyers with two-parameter valuations have also been studied [Malakhov
and Vohra, 2009, Pai and Vohra, 2014].

86

Combinatorial auctions for limited supply Our mechanism when agent types lie on known
linear subspaces can be seen as a generalization of the well-known logarithmic revenue approxi-
mation that is achieved by a second-price auction with a random reserve price in the single-item
setting [Goldberg et al., 2001]. Similar revenue approximations have been derived in multi-item
settings for various classes of bidder valuation functions such as unit-demand [Guruswami et al.,
2005], additive [Sandholm and Likhodedov, 2015, Likhodedov and Sandholm, 2005, Babaioff
et al., 2020], and subadditive [Balcan et al., 2008, Chakraborty et al., 2013]. To the best of our
knowledge, no previous techniques handle agent types on low-dimensional subspaces. Further-
more, our results are not restricted to combinatorial auctions unlike most previous research.

Sample-based mechanism design Likhodedov and Sandholm [2004, 2005], Sandholm and
Likhodedov [2015] introduced the idea of automatically tuning the parameters of a mechanism
based on samples of valuations. They also formulated mechanism design as a search problem
within a parameterized family. They developed custom hill-climbing methods for learning vari-
ous high-revenue auction formats, including affine maximizers, which we study in this chapter.
Balcan et al. [2005] were the first to apply tools from machine learning theory to establish the-
oretical guarantees on the sample complexity of mechanism design. Since then, there has been
a large body of work on both theoretical and practical aspects of data-driven mechanism design,
for example, studying the sample complexity of revenue maximization for various auction and
mechanism families [Morgenstern and Roughgarden, 2016, Cole and Roughgarden, 2014, Bal-
can et al., 2018d] and using deep learning to design high-revenue mechanisms [Dütting et al.,
2019, Duan et al., 2023, Curry et al., 2023].

Beyond mechanism design, the field of data-driven algorithm design [Balcan, 2020] estab-
lishes theoretical foundations for a strand of what was largely empirical work on sample-based al-
gorithm configuration (that predates sample-based mechanism design, e.g., Horvitz et al. [2001]).
This line of work is thematically similar to ours, but the main focus of our paper (and of the
mechanism design with predictions literature more broadly) is to quantify the performance im-
provement obtainable based on the quality of predictions (that might have been obtained through
learning from data). Khodak et al. [2022] show how to “learn the predictions in algorithms with
predictions”, thus concretely connecting the two research strands.

Work subsequent to our initial publication After our initial conference publication [Balcan
et al., 2023], a number of papers have continued to grow the area of mechanism design with
predictions. Still, this literature has largely focused on single-parameter settings. Specific appli-
cations include online single-item auctions [Balkanski et al., 2024b], single-parameter clock auc-
tions [Gkatzelis et al., 2025], and randomized single-item auctions [Caragiannis and Kalantzis,
2024]. Most closely related to the present paper is the work of Lu et al. [2024] who use the idea
of randomly modifying weakest types, that we proposed in the original conference version of
the present paper [Balcan et al., 2023], for error-tolerant design in a variety of single-parameter
settings—such as digital good auctions and auctions for the sale of multiple copies of a single
item.

Additionally, the subsequent chapters of this thesis explore further uses of weakest types—
and more broadly the information conveyed by type spaces—to design new core-selecting com-

87

binatorial auctions, derive new characterizations of revenue-optimal efficient mechanisms for
general type spaces, and more.

5.1 Problem Formulation, Example Applications, and Weakest-
Type VCG

We consider a general multidimensional mechanism design setting with a finite allocation space
Γ and n agents. Θi is the ambient type space of agent i. Agent i’s true private type θi ∈ Θi

determines her value v(θi, α) for allocation α ∈ Γ. We will interpret Θi as a subset of RΓ, so
θi[α] = v(θi, α). We use θ ∈ ×n

i=1Θi to denote a profile of types and θ−i ∈ Θ−i := ×j ̸=iΘi to
denote a profile of types excluding agent i. We now introduce our main model of side information
which is the focus of Sections 5.2 and 5.3 (we discuss other models in Section 5.4). First, the
ambient type space Θi is assumed to convey no information about each agent, that is, Θi = RΓ

≥0

(this is the standard assumption in the mechanism design literature). The mechanism designer
has access to a set-valued predictor Ti : ×j ̸=iΘj → P(Θi) for each agent. Predictor Ti takes
as input the revealed types θ−i of all agents excluding i and outputs a set Ti(θ−i) ⊆ Θi that
represents a prediction that agent i’s true type lies in Ti(θ−i). The mechanism designer has no
apriori guarantees about the quality (or validity) of the prediction output by Ti. We emphasize
that a prediction about agent i can depend on the revealed types of all other agents. This begets
a rich and expressive language of prediction that can incorporate, for example, market insights
by means of analyzing other agents’ true types (a form of learning within an instance [Baliga and
Vohra, 2003, Balcan et al., 2005, 2021c]), interlinked knowledge about multiple agents’ types,
etc. Importantly—as we will later demonstrate—allowing predictions to carry such a great level
of expressive power poses no barrier to incentive compatibility of our mechanisms. Finally, we
point out that the modeling assumption of a separate predictor for each agent does not in any
way restrict the ability of side information to convey relationships between the types of different
agents: indeed, the claim that “agent types (θ1, . . . , θn) satisfy property P ” induces predictors
T1, . . . , Tn where Ti is defined by Ti(θ−i) = {θ̂i : (θ̂i,θ−i) satisfies P}.

A mechanism with predictors is specified by an allocation rule α(θ;T1, . . . , Tn) ∈ Γ and a
payment rule pi(θ;T1, . . . , Tn) ∈ R for each agent i. We assume agents have quasilinear utili-
ties. A mechanism is incentive compatible (IC) if θi ∈ argmaxθ′i∈Θi

θi[α(θ
′
i,θ−i;T1, . . . , Tn)] −

pi(θ
′
i,θ−i;T1, . . . , Tn) holds for all i, θi ∈ Θi,θ−i ∈ Θ−i, that is, agents are incentivized to re-

port their true type regardless of what other agents report (this definition is equivalent to the
usual notion of dominant-strategy IC and simply stipulates that predictors ought to be used
in an IC manner). A mechanism is individually rational (IR) if θi[α(θi,θ−i;T1, . . . , Tn)] −
pi(θi,θ−i;T1, . . . , Tn) ≥ 0 holds for all i, θi,θ−i. We will analyze a variety of randomized
mechanisms that randomize over IC and IR mechanisms. Such randomized mechanisms are thus
IC and IR in the strongest possible sense (as supposed to Bayes-IC/IR which is weaker and holds
only in expectation). An important note: no assumptions are made on the veracity of Ti, and
agent i’s misreporting space is the full ambient type space Θi.

Given reported types θ, define w(θ) = maxα∈Γ
∑n

i=1 θi[α] to be the efficient social welfare.
Let α∗ = α∗(θ) = argmaxα

∑n
i=1 θi[α] denote the efficient allocation, that is, the allocation

88

that achieves w(θ). Our benchmark for welfare and revenue is the prior-free efficient welfare
OPT = w(θ), which is the strongest possible benchmark for both welfare and revenue.

Example applications

Our model of side information within the rich language of multidimensional mechanism design
allows us to capture a variety of different problem scenarios where both welfare and revenue
are desired objectives. We list a few examples of different multidimensional mechanism settings
along with examples of different varieties of predictions.

• Combinatorial auctions: There are m indivisible items to be allocated among n bidders (or
to no one). The allocation space Γ is the set of (n+ 1)m allocations of the items and θi[α]
is bidder i’s value for the bundle of items she is allocated by α. Let X and Y denote two
of the items for sale. The predictor Ti(θ−i) = {θi : θi[XY] ≥ 3/2 · θj[XY], θi[XY] ≥
θi[X] + θi[Y]} represents the prediction that bidder i’s value for the bundle XY is at
least 50% greater than bidder j’s value for the same bundle and that items X and Y are
complements for her. Here, Ti(θ−i) is the intersection of linear constraints.

• Matching markets: There are m items (e.g., houses) to be matched to n buyers. The
allocation space Γ is the set of matchings on the bipartite graph Km,n and θi[α] is buyer i’s
value for the item α assigns her. Let α1, α2, α3 denote three matchings that match house
1, house 2, and house 3 to agent i, respectively. The type space restriction Θi = {θi :
θi[α1] = 2 · θi[α2] = 0.75 · θi[α3]} represents the information that agent i values house 1
twice as much as house 2, and 3/4 as much as house 3. Here, Θi is the linear space given
by span(⟨1, 1/2, 4/3⟩) (this model is further studied in Section 5.4.2 and differs from our
main prediction model).

• Fundraising for a common amenity: A multi-story office building that houses several com-
panies is opening a new cafeteria on a to-be-determined floor and is raising construc-
tion funds. The allocation space Γ is the set of floors of the building and θi[α] is the
(inverse of the) cost incurred by building-occupant i for traveling to floor α. The set
Ti = {θi : ∥θi − θ∗i ∥p ≤ k} postulates that i’s true type is no more than k away from θ∗i in
ℓp-distance, which might be derived from an estimate of the range of floors agent i works
on based on the company agent i represents. Here, Ti is given by a (potentially nonlinear)
distance constraint and has no dependence on the other agents’ revealed types.

• Bidding for a shared outcome: A delivery service that offers multiple delivery rates (priced
proportionally) needs to decide on a delivery route to serve n customers. The allocation
space Γ is the set of feasible routes and θi[α] is agent i’s value for receiving her packages
after the driving delay specified by α. Let αt denote an allocation that imposes a driving
delay of t on agent i. The set Ti(θ−i) = {θi : θi[α0] ≥ maxj ̸=i θj[α0] + $50, θi[αt+1] ≥
ft(θi[αt]) ∀t} is the prediction that agent i is willing to pay $50 more than any other agent
to receive her package as soon as possible, and is at worst a time discounter determined by
(potentially nonlinear) discount functions ft. Here, the complexity of Ti is determined by
the function ft.

89

5.1.1 The weakest-type VCG mechanism

The classical Vickrey-Clarke-Groves (VCG) mechanism [Vickrey, 1961, Clarke, 1971, Groves,
1973] elicits agent types θ, implements the efficient allocation α∗ and charges agent i a payment
pi(θ) = w(0,θ−i) −

∑
j ̸=i θj[α

∗] which is agent i’s externality. VCG is generally highly sub-
optimal when it comes to revenue [Ausubel and Milgrom, 2006, Varian and Harris, 2014, Metz,
2015] (and conversely mechanisms that shoot for high revenue can be highly welfare subopti-
mal). However, if efficiency is enforced as a constraint of the mechanism design (in addition to IC
and IR), then the following weakest-type VCG mechanism, first introduced by Krishna and Perry
[1998] in a Bayesian form, is in fact revenue optimal (Krishna and Perry call it the generalized
VCG mechanism). While VCG payments are based on participation externalities, weakest-type
VCG payments are based on agents being replaced by their weakest types who have the smallest
impact on welfare. This approach generates strictly more revenue than vanilla VCG. Krishna and
Perry [1998] proved that the Bayesian version of weakest-type VCG is revenue optimal among
all efficient, Bayes IC, and Bayes IR mechanisms. We next present the weakest-type VCG mech-
anism, which is a generalization of their mechanism in a prior-free setting.

To describe our weakest-type VCG mechanism, we depart slightly from the language of pre-
dictors and focus on what is already known to the mechanism designer as conveyed by the joint
type space of the agents. That is, there is a joint type space Θ ⊆ ×n

i=1RΓ
≥0 and the mechanism

designer knows that the revealed type profile θ = (θ1, . . . , θn) belongs to Θ. The assump-
tion of a joint type space with no further restrictions allows for a rich knowledge structure that
can capture arbitrary relationships between agents; given revealed types θ−i for all agents ex-
cluding i, the mechanism designer knows that the revealed type of agent i belongs to the set
{θ̂i : (θ̂i,θ−i) ∈ Θ} (which is a projection of the joint type space Θ onto agent i’s space, given
θ−i). We now define the weakest-type VCG mechanism in this general setting.
Weakest-type VCG
Input: joint type space Θ ⊆ ×n

i=1RΓ
≥0.

• Agents asked to reveal types θ = (θ1, . . . , θn).
• The efficient allocation α∗ = argmaxα∈Γ

∑n
i=1 θi[α] is implemented and agent i is charged

a payment of

pi(θ) = min
θ̃i:(θ̃i,θ−i)∈Θ

w(θ̃i,θ−i)−
∑
j ̸=i

θj[α
∗].

We call θ̃i in the above minimization agent i’s weakest type. If (0,θ−i) ∈ Θ, θ̃i = 0,
and pi(θ) = w(0,θ−i) −

∑
j ̸=i θj[α

∗] is the vanilla VCG payment. On the other extreme if
{θ̂i : (θ̂i,θ−i) ∈ Θ} = {θi}, that is, the the joint type space exactly conveys agent i’s true
type, pi(θ) = θi[α

∗] and agent i’s total value is extracted as payment. Krishna and Perry [1998]
essentially prove a weaker form (they assume independent type spaces, that is, Θ = ×iΘi has
a product structure) of the following result in the Bayesian setting (that is, they only require the
weaker constraints of Bayes IC and Bayes IR). We reproduce that here in a prior-free setting
with our more general model of type spaces. We present two proofs: one based on the rev-
enue equivalence theorem and one based on the result of Holmström [1979] concerning Groves
mechanisms.

90

Theorem 5.1.1. Let Θ be a compact and convex joint type space. The weakest-type VCG mecha-
nism is incentive compatible and individually rational. Furthermore, it is revenue-optimal among
all efficient, incentive compatible, and individually rational mechanisms.

Proof. Weakest-type VCG is incentive compatible since it is a Groves mechanism [Groves,
1973], that is, the pivot term minθ̃i:(θ̃i,θ−i)∈Θ w(θ̃i,θ−i) has no dependence on agent i’s re-
vealed type θi. Furthermore, agent i’s utility is

∑n
j=1 θj[α

∗]−minθ̃i:(θ̃i,θ−i)∈Θ(maxα
∑

j ̸=i θj[α]+

θ̃i[α]) ≥
∑n

j=1 θj[α
∗] − maxα

∑n
j=1 θj[α] = 0, which proves individual rationality. The proof

that weakest-type VCG is revenue optimal follows from the revenue equivalence theorem; see Vohra
[2011, Theorem 4.3.1]. Let pi(θ) be the weakest-type VCG payment rule, and let p′i(θ) be any
other payment rule that also implements the efficient allocation rule. By revenue equivalence, for
each i, there exists hi(θ−i) such that p′i(θi,θ−i) = pi(θi,θ−i) + hi(θ−i). Suppose θ is a profile
of types such that p′i generates strictly greater revenue than pi, that is,

∑n
i=1 p

′
i(θ) >

∑n
i=1 pi(θ).

Equivalently
∑n

i=1 pi(θ,θ−i) + hi(θ−i) >
∑n

i=1 pi(θi,θ−i). Thus, there exists i∗ such that
hi∗(θ−i∗) > 0. Let

θ̃i∗ = argmin
θ′
i∗ :(θ

′
i∗ ,θ−i∗)∈Θ

w(θ′i∗ ,θ−i∗)

be the weakest type with respect to θ−i∗ . If weakest-type VCG is run on the type profile
(θ̃i∗ ,θ−i∗), the agent with type θ̃i∗ pays their value for the efficient allocation. In other words,
the individual rationality constraint is binding for θ̃i∗ . Since hi∗(θ−i∗) > 0, p′i violates individual
rationality, which completes the proof.

We provide an alternate proof of the revenue optimality of weakest-type VCG via the result
of Holmström [1979] that, for convex type spaces, any efficient and IC mechanism is a Groves
mechanism. (Technically, Holmström [1979] assumes that agent type spaces are independent,
that is Θ has a product structure. We can circumvent this issue as follows. Let Θi(θ−i) = {θ̂i :
(θ̂i,θ−i) ∈ Θ}. We can then give Θ product structure by writing Θ = Θ1(θ−1)×· · ·×Θn(θ−n).
Each Θi(θ−i) is convex since Θ itself is convex.) Then, the revenue-maximizing Groves payment
scheme hi(θ−i) solves for each agent i

max

{
hi(θ−i) : θ̃i[α

∗]−

(
hi(θ−i)−

∑
j ̸=i

θj[α
∗]

)
≥ 0 ∀θ̃i s.t. (θ̃i,θ−i) ∈ Θ

}
,

which yields the maximum Groves payment subject to IR constraints for all possible types θ̃i such
that (θ̃i,θ−i) ∈ Θ (and has no dependence on agent i’s revealed type θi). Rewrite the constraint
as hi(θ−i) ≤ w(θ̃i,θ−i) ∀ θ̃i s.t. (θ̃i,θ−i) ∈ Θ. So, hi(θ−i) ≤ minθ̃i:(θ̃i,θ−i)∈Θw(θ̃i,θ−i) which
is precisely weakest-type VCG.

Remark. The weakest-type VCG mechanism is not equivalent to a mechanism that actually adds
“fake” competitors into the mechanism environment (as is the case with mechanisms that use
“phantom bidders” [Sandholm, 2013]). Indeed, consider the mechanism that, for each agent i,
adds an agent n+ i who is the weakest type and then runs vanilla VCG over the augmented set of
2n agents. That mechanism is not necessarily efficient and is thus not equivalent to weakest-type
VCG. As an example consider a two-item, two-bidder auction where each bidder only wants
one item. Say v1(X) = v1(Y) = 10, v2(X) = 5, v2(Y) = 4. The efficient allocation gives

91

Y to 1 and X to 2 and has welfare 15. Suppose agent 1’s type space is {v1 : v1(X) ≥ 7}
and agent 2’s type space is R2

≥0 (so type spaces are independent). So agent 1’s weakest type is
ṽ1(X) = 7, ṽ1(Y) = 0, and agent 2’s weakest type is ṽ2(X) = ṽ2(Y) = 0. Running vanilla
VCG among {v1, ṽ1, v2, ṽ2} yields an efficient allocation that gives X to 1̃ and Y to 1. So, while
an agent’s weakest type will never take that agent’s items away from them, they can win some
other agent’s items. In weakest-type VCG, the weakest types are not real agents and only serve
to boost prices—they do not receive any utility from the allocation.

Vanilla VCG payments can be interpreted as implementing a first-price/pay-as-bid scheme
with a discount for each agent equal to the welfare improvement they create by participating.
Weakest-type VCG payments implement a pay-as-bid scheme with a discount equal to the wel-
fare improvement an agent creates over the weakest type in their type space. The discount can
be directly interpreted as an information rent (e.g., Börgers [2015]) incurred by the agents. The
more private information an agent has (measured by how far away her IR constraint in weakest-
type VCG is from binding—we discuss this aspect formally in the subsequent section) relative
to the information conveyed by the type space, the greater her discount. Said another way, the
more private information an agent has to distinguish herself from the weakest type, the greater
her discount. The weakest type is also the most reluctant type [Krishna and Perry, 1998] in that
it receives zero utility from participation. Finally, weakest types can be viewed as a sophisti-
cated form of reserve pricing (and any reserve pricing structure atop VCG can be expressed as a
weakest-type mechanism).

We conclude our discussion of weakest-type VCG with the observation that the weakest-type
VCG mechanism can loosely be interpreted as a prior-free analogue of the seminal Bayesian
total-surplus-extraction mechanism of Crémer and McLean [1988] for correlated agents (gener-
alized to infinite type spaces by McAfee and Reny [1992]). This is an interesting connection to
explore further in future research.

In the following section we return to our model of predictors, which can now be interpreted
as conveying the same kind of knowledge as a joint type space, but without the guarantee that
the information conveyed about the agents is actually correct. That guarantee—which equiva-
lently stipulates that agent i’s misreporting space (that determines her IC and IR constraints) is
restricted to the set {θ̂i : (θ̂i,θ−i) ∈ Θ}—was required in Theorem 5.1.1 to ensure individual
rationality of weakest-type VCG. Our setting of mechanism design with predictors can thus be
interpreted as removing this constraint on the misreporting space: predictors {Ti} have no apriori
guarantees on their veracity and we must use them in a way that respects IC and IR constraints
for a misreporting space equal to the entire ambient type space.

5.2 Measuring Predictor Quality via Weakest Types
In this section we pin down what it means to be a high-quality predictor and completely charac-
terize predictors that yield a certain level of payment in weakest-type VCG (including those that
are too aggressive). Consider a direct use of the predictors in the weakest-type VCG mechanism:
types θ are elicited, the efficient allocation α∗ is computed, and payments

pi(θ) = min
θ̃i∈Ti(θ−i)

w(θ̃i,θ−i)−
∑
j ̸=i

θj[α
∗]

92

are computed. Writing

pi = θi[α
∗]−

(
w(θi,θ−i)− min

θ̃i∈Ti(θ−i)
w(θ̃i,θ−i)

)
(5.1)

makes the connection between predictions and payment explicit—as mentioned previously we
can interpret the payment as a pay-of-bid price minus a discount measuring the welfare gains cre-
ated by θi over the weakest type in Ti(θ−i). This way of writing the payment also makes explicit
when a prediction Ti(θ−i) is too aggressive/competitive: if minθ̃i∈Ti(θ−i)

w(θ̃i,θ−i) > w(θi,θ−i),
pi(θ) > θi[α

∗], and agent i’s IR constraint is violated (which any reasonable mechanism should
recognize and rectify). Our main mechanisms in the subsequent sections will explicitly handle
such predictors to ensure that IR is met for all agents.

Our measure of predictor error is precisely this delta in welfare: let

∆err
i = ∆err

i (θ−i) = w(θi,θ−i)− min
θ̃i∈Ti(θ−i)

w(θ̃i,θ−i).

So, ∆err
i (θ−i) < 0 means the predictor is too aggressive, ∆err

i (θ−i) > 0 means the predictor is
too conservative, and ∆err

i (θ−i) = 0 means the predictor exactly predicts agent i’s welfare level.
The following result is immediate from the definition of ∆err

i and Theorem 5.1.1.
Theorem 5.2.1. Let T1, . . . , Tn be predictors such that ∆err

i (θ−i) ≥ 0 for all agents i. The
mechanism that implements the efficient allocation and prices given by Equation (5.1) is IC, IR,
and extracts payment pi = θi[α

∗]−∆err
i (θ−i) from each agent—and thus generates revenue equal

to OPT−
∑

i ∆
err
i (θ−i).

As mentioned in Section 5.1.1, ∆err
i can be directly interpreted as an information rent for

agent i. The more private information she possesses relative to the weakest type, the greater her
discount.

We describe an equivalent geometric characterization of predictors that generate a certain
payment in the framework above. Let Lw(θ−i) =

{
θ̃i : w(θ̃i,θ−i) = w

}
be a welfare level set

and let L≥k(θ−i) =
{
θ̃i : w(θ̃i,θ−i) ≥ w

}
. The following propositions follow immediately from

the definitions.
Proposition 5.2.2. L≥w(θ−i) is the union of axis-parallel halfspaces.

Proof.

L≥w(θ−i) =

{
θ̃i :

∨
α∈Γ

θ̃i[α] ≥ w −
∑
j ̸=i

θj[α]

}
=
⋃
α∈Γ

{
θ̃i : θ̃i[α] ≥ w −

∑
j ̸=i

θj[α]

}
.

Proposition 5.2.3. A predictor Ti has error ∆err
i (θ−i) = ∆i if and only if it intersects the level

set Lw(θi,θ−i)−∆i
and does not intersect any Lw with w < w(θi,θ−i). Predictor Ti satisfies

∆err
i (θ−i) ≥ 0 if and only if Lw(θi,θ−i)(θ−i) ⊆ Lw(θ̃i,θ−i)

(θ−i) where θ̃i is the weakest type in
Ti(θ−i).

93

11 22 33 44

11

22

33

00

Figure 5.1: Two different predictions (the ellipse and polygon displayed with dashed bound-
aries) that are equivalent in the sense that their weakest types create the same amount of welfare
w(θ̃i,θ−i) = w(θi,θ−i)−∆i for the system and thus generate the same weakest-type payments
for agent i, despite the fact that one prediction (the polygon) contains the true type and the other
(the ellipse) completely misses the true type. Welfare level sets are depicted by the solid black
lines.

One notable consequence is that if Ti(θ−i) intersects Lw(0,θ−i), Ti is a “useless” predictor
in that the information it provides is not even strong enough to say that agent i generates any
extra welfare to the system at all. More precisely, the weakest-type payment generated by Ti

(Equation (5.1)) is equal to the vanilla VCG payment. On the other hand, ∆err
i = 0 is necessary

and sufficient for a predictor to extract an agent’s full value as payment. Such predictors need
not even contain the true type, as illustrated further by the following example.
Example 5.2.4. Consider an allocation space Γ = {α1, α2} with two outcomes as depicted in
Figure 5.1. Suppose θ−i is such that

∑
j ̸=i θj[α1] = 1 and

∑
j ̸=i θj[α2] = 3, so w(0,θ−i) = 3.

Welfare level sets are depicted by the bold black lines. Lw(0,θ−i) is the set of types θ̃i that do not
create any additional welfare for the system which is precisely the set {θ̃i : θ̃[α1] ≤ 2 ∧ θ̃[α2] =
0}. The sets enclosed by the dotted lines represent the outputs of two different predictors. Each
set’s weakest type generates a welfare of w(θ̃i,θ−i) = 4 as each prediction intersects L4 and
no lower level set. The true type of agent i, θi, generates welfare w(θi,θ−i) = 5. Therefore,
both predictors have the same error of ∆err

i = 1 and generate equal weakest-type VCG payments
(Equation (5.1)). This is in spite of the fact that only one of the predictions actually contains the
true type (the polygon) while the other (the ellipse) is quite far away from the true type.

One remarkable property of this framework highlighted by the above example is that pre-
dictors need not know anything about the precise structure of types. As long as they provide
a reasonable (under)estimate of agent i’s competitive level given θ−i they can be used in the
weakest-type mechanism to fruitfully boost revenue over vanilla VCG. Consider the setting of
a combinatorial auction with m items and n bidders wherein a bidder’s ambient valuation space
is R2m

≥0 since she can express a value for any bundle of items. In practice, the auction designer

94

might set a cap on the number of distinct bundles any single bidder can submit bids for (as was
done in the spectrum auctions held in the UK and Canada [Ausubel and Baranov, 2017]). In
this case, a predictor need not reckon with the question of what bundles the bidder will bid on
(which is ostensibly a very difficult prediction problem that would require unrealistic insight into
a bidder’s bidding strategy). It only needs to provide a good estimate of her competitive level as
measured by the welfare she creates for the system, which we posit is a much more reasonable
and practically plausible prediction task. Indeed, in high-stakes auctions, the auction designer
might reasonably expect a certain bidder (who, say, represents a large conglomerate as is the case
in sourcing and spectrum auctions) to win at least some items. That already provides the auction
designer sufficient knowledge to implement a weakest-type pricing scheme that extracts greater
revenues than VCG. To summarize, a predictor like the ellipse in Figure 5.1 that is completely
wrong about the bundles bidder i bids on is still perfectly good in our framework, and therefore
predictors have a good deal of flexibility in the information they convey.

The results of Chapter 7 give a formal framework to understand the types of richer side
information structures needed to express the type of bundle uncertainty mentioned above. Here,
side information can represent disjunctions, and therefore can capture more refined knowledge
that depends on the exact realization of an agent’s type. A generalization of the weakest-type
mechanism characterizes the revenue-optimal efficient mechanism in this general setting.

Another way in which predictors have leeway is the fact that only the prediction error ∆err
i (θ−i)

given the revealed types of the other agents affects payments. Predictor Ti could be wildly inac-
curate on a different set of types, that is, |∆err

i (θ′
−i)| might be huge, but as long as ∆err

i (θ−i) is
small, it is a highly useful predictor.

5.2.1 Computational considerations
Before we present our main mechanism and its guarantees, we briefly discuss the computational
complexity of computing weakest type payments. We consider the special case where the sets
Ti(θ−i) output by the predictors are polytopes. Let size(Ti) denote the max encoding size over
all θ−i required to write down the constraints defining Ti(θ−i).
Theorem 5.2.5. Let Ti(θ−i) be a polytope. The weakest type and its corresponding welfare
minθ̃i∈Ti(θ−i)

w(θ̃i,θ−i), and thus pi in Equation (5.1), can be computed in poly(|Γ|, size(Ti), n)
time.

Proof. Weakest type computation is a min-max optimization problem: minθ̃i∈Ti(θ−i)
w(θ̃i,θ−i) =

minθ̃i∈Ti(θ−i)
maxα∈Γ θ̃i[α] +

∑
j ̸=i θj[α]. We can rewrite the min-max problem as a pure min-

imization problem by enumerating the set of allocations Γ and introducing an auxiliary scalar
variable γ to replace the inner maximization. The weakest type in Ti(θ−i) is therefore the solu-
tion θ̃i ∈ RΓ to the linear program

min

{
γ :

θ̃i[α] +
∑

j ̸=i θj[α] ≤ γ ∀α ∈ Γ,

θ̃i ∈ Ti(θ−i), γ ≥ 0

}
(5.2)

with |Γ| + 1 variables and |Γ| + size(Ti) constraints. Generating the first set of constraints
requires the value of

∑
j ̸=i θj[α] for each α ∈ Γ, which takes time ≤ n|Γ| to compute.

95

More generally, the complexity of the above mathematical program is determined by the com-
plexity of constraints needed to define Ti(θ−i): for example, if Ti(θ−i) is a convex set then they
are convex programs. Naturally, a major caveat of Theorem 5.2.5 is that |Γ| can be very large (for
example, |Γ| is exponential in combinatorial auctions). However, this issue can be circumvented
as long as we have access to a practically-efficient routine for finding welfare-maximizing alloca-
tions, that is, for computing w(θ). For small allocation spaces that might amount to an exhaustive
search for Γ. In large allocation spaces like in combinatorial auctions, that might involve integer
programming or practically-efficient custom search techniques [Rothkopf et al., 1998, Sandholm
et al., 2005].
Theorem 5.2.6. Linear program (5.2) can be solved with polynomially many calls to w(·) and
additional poly(size(Ti)) time.

Proof. Let Γ̃ ⊆ Γ denote the set of allocations that appear in the description of Ti(θ−i) (e.g.,
as a list of linear constraints on θi). Then, for any α /∈ Γ̃, the weakest type θ̃i that minimizes
w(θ̃i,θ−i) over θ̃i ∈ Ti(θ−i) satisfies θ̃i[α] = 0 as θ̃i[α] is unconstrained. Therefore, the number
of variables in the linear program (5.2) is not |Γ| but can be bounded by |Γ̃| ≤ size(Ti). A
separation oracle for the linear program, given as input to the Ellipsoid algorithm [Grotschel
et al., 1993], can be implemented as follows: a candidate point (γ̂, θ̂i) is feasible if and only
if w(θ̂i,θ−i) ≥ γ̂ and θ̂i ∈ Ti(θ−i); else the efficient allocation achieving welfare w(θ̂i,θ−i)
represents a violated constraint.

5.3 Main Mechanism and its Guarantees
We now present our main mechanism and analyze the total welfare and revenue it generates. Let
∆VCG

i (θ−i) = minθ̃i∈Ti(θ−i)
w(θ̃i,θ−i)− w(0,θ−i). (We have ∆VCG

i (θ−i) ≤ θ̃i[α̃], where θ̃i is the

weakest type in Ti(θ−i) and α̃ is the efficient allocation on (θ̃i,θ−i).) Our mechanismMζ,λ is
parameterized by two tunable scalar parameters, ζi and λi > 0, per agent.
MechanismMζ,λ

Input: predictors Ti : Θ−i → P(Θi) for each agent i.
• Agents asked to reveal types θ1, . . . , θn.
• Let α∗ = argmaxα∈Γ

∑n
i=1 θi[α] be the efficient allocation. For each agent i let

pi = min
θ̃i∈Ti(θ−i)

w(θ̃i,θ−i) + ζi − 2kiλi −
∑
j ̸=i

θj[α
∗]

where ki is drawn uniformly at random from the set{
0, 1, . . . ,

⌈
log2

(
∆VCG

i (θ−i) + ζi
λi

)⌉}
.

• Let I = {i : θi[α∗]− pi ≥ 0} . If agent i /∈ I , i is excluded and receives zero utility (zero
value and zero payment).1 If agent i ∈ I , i enjoys allocation α∗ and pays pi.

1One practical consideration is that this step might require a more nuanced implementation of an “outside option”

96

Mζ,λ receives prediction Ti(θ−i) ⊆ Θi for each agent i. Parameter ζi is added to the welfare
w(θ̃i,θ−i) of the weakest type in Equation 5.1 and allows for an initial modification to the pre-
diction: ζi > 0 makes the welfare more aggressive and ζi < 0 makes the welfare less aggressive.
In order to “smooth out” (more on this later) the final welfare level, the welfare is relaxed by
subtracting a random loss of 2kiλi where ki is chosen uniformly at random from a logarithmic
discretization of the interval [w(0,θ−i), w(θ̃i,θ−i) + ζi]. Critically, the discretization itself de-
pends on the true types of all other agents θ−i. Finally, if the final welfare level chosen byMζ,λ

for agent i (which has no dependence on agent i’s revealed type) ends up being too aggressive,
the mechanism has a final step that explicitly excludes that agent enforcing that they receive zero
utility in order to prevent an IR violation due to charging that agent more than their value.

To summarize, Mζ,λ in essense performs a “doubling search” for the welfare created by
agent i’s true type, starting from the welfare w(θ̃i,θ−i) of the given prediction. Parameter ζi is
an “initial hop” that allows the mechanism designer to perform an initial modification to the pre-
diction based on whether he thinks the prediction is likely to be too aggressive (in which case he
should set ζi < 0) or too conservative (in which case he should set ζi > 0). Parameter λi controls
how quickly the doubling search proceeds and covers the entire welfare range. Before proceed-
ing to the analysis of Mζ,λ, we briefly record that it is incentive compatible and individually
rational.
Theorem 5.3.1. Mζ,λ is IC and IR.

Proof. Mζ,λ is IC for the same reason weakest-type VCG is IC (Theorem 5.1.1). It is IR by
definition: all agents with potential IR violations (those not in I) do not participate and receive
zero utility.

Finally, letMζ,0 denote—with a slight abuse of notation as it represents the limiting behavior
ofMζ,λ as λ ↓ 0—the deterministic mechanism that sets pi = minθ̃i∈Ti(θ−i)

w(θ̃i,θ−i) − ζi −∑
j ̸=i θj[α

∗]. So,M0,0 uses the predicted sets output by each Ti without modification. M0,0 is
essentially weakest-type VCG with a final step (that sacrifices welfare) to ensure that no agent’s
IR constraint is violated. Observe that if the mechanism designer knows the prediction errors
{∆err

i (θ−i)}, runningMζ,0 with ζi = ∆err
i for each agent i achieves welfare and revenue equal to

OPT. Of course this approach is extremely brittle to perturbations in the mechanism designer’s
estimate of ∆err

i : if ζi > ∆err
i (that is, ζi makes the predictor too aggressive) the value and

payment extracted from agent i both drop to zero (though observe that if ζi < ∆err
i welfare is

unaffected and payment decreases linearly). We discuss the sensitivity and precise parameter
dependence ofMζ,λ shortly—first we pin down its precise welfare and revenue guarantees.

5.3.1 Guarantees
We now state, prove, and discuss our main welfare and revenue guarantees on Mζ,λ. Define
log+2 : R → R≥0 by log+2 (x) = 0 if x < 1 and log+2 (x) = log2(x) if x ≥ 1. We abbreviate
∆err

i (θ−i) and ∆VCG
i (θ−i) as ∆err

i and ∆VCG
i , respectively, for readability.

for agents to be indifferent between participating and being excluded versus not participating at all. (We do not
pursue this highly application-specific issue in this work.) In auction and matching settings this step is standard: the
agent simply receives no items.

97

Theorem 5.3.2 (Welfare guarantee). The expected value enjoyed by agent i underMζ,λ is equal
to (

1− ⌈log+2 ((ζi −∆err
i)/λi)⌉

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

)
θi[α

∗].

The expected welfare ofMζ,λ is equal to

n∑
i=1

(
1− ⌈log+2 ((ζi −∆err

i)/λi)⌉
1 + ⌈log2((ζi +∆VCG

i)/λi)⌉

)
θi[α

∗] ≥
(
1−max

i

⌈log+2 ((ζi −∆err
i)/λi)⌉

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

)
OPT .

Proof. Let Ki = ⌈log2((∆VCG
i (θ−i) + ζi)/λi)⌉ and let k∗

i be the smallest k ∈ {0, . . . , Ki} such
that w(θi,θ−i) ≥ minθ̃i∈Ti(θ−i)

w(θ̃i,θ−i)+ ζi− 2kλi (for brevity let θ̃i denote the weakest type),
so

k∗
i =

⌈
log+2

(
ζi −∆err

i

λi

)⌉
.

So, agent i’s expected value is

E [θi[α
∗] · 1 [i ∈ I]] = E

[
θi[α

∗] · 1
[
w(θi,θ−i) ≥ w(θ̃i,θ−i) + ζi − 2kiλi

]]
= E [θi[α

∗] · 1 [ki ≥ k∗
i]]

= θi[α
∗] · Pr (ki ≥ k∗

i) .

and

Pr (ki ≥ k∗
i) = 1− Pr (ki < k∗

i) = 1− k∗
i

1 +Ki

= 1− ⌈log+2 ((ζi −∆err
i)/λi)⌉

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

as claimed. Finally, E[welfare] = E [
∑n

i=1 θi[α
∗] · 1[i ∈ I]] so summing the above over all

agents yields the welfare bound.

Theorem 5.3.3 (Revenue guarantee). The expected payment made by agent i inMζ,λ is at least(
1− ⌈log+2 ((ζi −∆err

i)/λi)⌉
1 + ⌈log2((ζi +∆VCG

i)/λi)⌉

)
(θi[α

∗]− (∆err
i − ζi))−

4(∆VCG
i + ζi)

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

.

The expected revenue ofMζ,λ is at least

(
1−max

i

⌈log+2 ((ζi −∆err
i)/λi)⌉

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

)(
OPT−

n∑
i=1

(∆err
i − ζi)

)
−

n∑
i=1

4(∆VCG
i + ζi)

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

.

Proof. Let k∗
i be defined as in Theorems 5.3.2 and let θ̃i be the weakest type in Ti(θ−i). We have

(as ki < k∗
i implies w(θi,θ−i) ≥ w(θ̃i,θ−i) + ζi − 2kiλi so agent i does not participate and pays

98

nothing)

E[pi] =
Ki∑

k=k∗i

E[pi|ki = k] · Pr(ki = k)

=
1

1 +Ki

Ki∑
k=k∗i

(
θi[α

∗]− (w(θi,θ−i)− (w(θ̃i,θ−i) + ζi − 2kλi))
)

=
1

1 +Ki

Ki∑
k=k∗i

(
θi[α

∗]− (∆err
i − ζi + 2k · λi)

)
=

(
1− k∗

i

1 +Ki

)
(θi[α

∗]− (∆err
i − ζi))−

λi

1 +Ki

Ki∑
k=k∗i

2k

=

(
1− k∗

i

1 +Ki

)
(θi[α

∗]− (∆err
i − ζi))−

λi2
Ki+1

1 +Ki

,

where in the first line we have rewritten the price formula used in Mζ,λ as a pay-as-bid with
discount, as discussed previously. We have λi2

Ki+1 ≤ λi(4(∆
VCG
i + ζi)/λi) = 4(∆VCG

i + ζi).
Substituting yields the desired per-agent payment bound and summing over agents yields the
desired revenue bound.

In the above bounds, the term 1 − ⌈log+2 ((ζi−∆err
i)/λi)⌉

1+⌈log2((ζi+∆VCG
i)/λi)⌉ represents the probability that the

modified weakest-type welfare is less than or equal to the true welfare created by agent i, that
is, the probability that i ∈ I . If ζi ≤ ∆err

i + λi, this probability is equal to 1, and so, as
further described below, payment is linear in both ζi and ∆err

i in that regime (and value/welfare is
constant and optimal). The payment/revenue bounds suffer from an additional additive loss that
has no dependence on ∆err

i . This can be interpreted a penalty for how quickly the discretization
covers the welfare interval [w(0,θ−i), w(θ̃i,θ−i) + ζi] (which enables more “smoothness” in
payment degradation) controlled by parameter λi—it is decreasing in λi.

If the mechanism designer knows ∆err
i , the optimal mechanism would be the deterministic

mechanismMζ,0 where ζi = ∆err
i , which obtains welfare and revenue equal to OPT. Further-

more,Mζ,λ with ζi = ∆err
i and λi ≤ O

(
ζi+∆VCG

i

2(ζi+∆VCG
i

)/εi

)
achieves E[pi] = θi[α

∗]−εi, so its welfare
is equal to OPT and its revenue is equal to OPT−

∑
i εi. Of course it is unrealistic to assume

that the mechanism designer knows ∆err
i exactly, and this exact tuning leads to brittle perfor-

mance if the mechanism designer overestimates ∆err
i and sets ζi > ∆err

i + λi. We illustrate how
welfare and revenue degrade as the parameter tuning and/or the error of the predictors worsen.
We plot agent value (Figure 5.2) and payment (Figure 5.3) as a function of ζi for different λi

settings. The key takeaway is that if ζi ≤ ∆err
i + λi, the ζi-adjusted predictor is a conservative

prediction, that is, its welfare ζi+minθ̃i∈Ti(θ−i)
w(θ̃i,θ−i) ≤ w(θi,θ−i). In this case, agent value

remains optimal (Figure 5.2) and payment degrades linearly in ζi and in ∆err
i (Figure 5.3). If

ζi > ∆err
i + λi, value (Figure 5.2) and payment (Figure 5.3) degrade at a rate determined by λi.

The larger λi is the more gradual the decay. Smaller values of λi yield greater payment extracted
when ζi ≤ ∆err

i + λi, but lead to more drastic payment degradation for ζi > ∆err
i + λi. So,

99

2 3 4 5
ζ

0.2

0.4

0.6

0.8

1.0

Value

λ=1/2

λ=1/210

λ=1/2100

Figure 5.2: An agent’s expected value (as a fraction of θi[α∗]) as a function of ζi for problem
parameters ∆VCG

i = 10, ∆err
i = 2 (conservative prediction), varying λi ∈ {2−100, 2−10, 2−1}.

the parameter λi represents a trade-off between performance in the best case and error tolerance,
and is one that the mechanism designer must choose carefully based on his confidence in the
prediction. Data-driven algorithm design [Balcan, 2020] provides a toolkit for parameter tuning
with provable guarantees.

5.3.2 Consistency and robustness
We situate our results within the consistency-robustness framework studied by the algorithms-
with-predictions literature. Furthermore, we retrospectively discuss the failures of some alternate
approaches—and how Mζ,λ addresses those failures—that are solely concerned with consis-
tency and robustness measures.

We say a mechanism is (a, b)-consistent and (c, d)-robust if when predictions are perfect
(which, in our setting, means ∆err

i = 0 ⇐⇒ minθ̃i∈Ti(θ−i)
w(θ̃i,θ−i) = w(θi,θ−i)) it satisfies

E[welfare] ≥ a ·OPT, E[revenue] ≥ b ·OPT, and satisfies E[welfare] ≥ c ·OPT,E[revenue] ≥
d · VCG independent of the prediction quality (where VCG denotes the revenue of the vanilla
VCG mechanism). Consistency demands near-optimal performance when the side information
is perfect, and therefore we compete with the total social surplus OPT on both the welfare and
revenue fronts. Robustness deals with the case of arbitrarily bad side information, in which
case we would like our mechanism’s performance to be competitive with vanilla VCG, which
already obtains welfare equal to OPT. High consistency and robustness ratios are in fact trivial
to achieve, and we will thus largely not be too concerned with these measures—our main goal is
to design high-performance mechanisms that degrade gracefully as the prediction errors increase.

Failures of other approaches We discuss a trivial approach that obtains high consistency and
robustness ratios, but suffers from huge discontinuous drops in performance even when predic-
tions are nearly perfect, further illustrating the need for a well-tuned instantiation ofMζ,λ.

Trust predictions completely One trivial way of using predictions is to trust them completely,
that is, run weakest-type VCG with payments given by Equation (5.1) and exclude any

100

-1 1 2 3 4 5
ζ

5

10

15

Payment

-1 1 2 3 4 5
Δerr

5

10

15

Payment

λ=1/2100

λ=1/210

λ=1/2

Figure 5.3: Left: Payment as a function of ζi for problem parameters θi[α∗] = 15, ∆VCG
i = 10,

∆err
i = 2 (conservative prediction), varying λi ∈ {2−100, 2−10, 2−1}. Right: Payment as a

function of ∆err
i for problem parameters θi[α

∗] = 15, ∆VCG
i = 10 and mechanism parameter

ζi = 2, varying λi ∈ {2−100, 2−10, 2−1}.

agent who is charged too much (this mechanism is given by M0,0). This approach gen-
erates welfare

∑
i:∆err

i ≥0 θi[α
∗] and revenue

∑
i:∆err

i ≥0 θi[α
∗] − ∆err

i (Theorem 5.2.1). If
predictions are perfect, that is, ∆err

i = 0 for all i, both welfare and revenue are equal to
OPT. However, if all predictions are such that ∆err

i < 0, both welfare and revenue drop to
0. So this mechanism is (1, 1)-consistent and (0, 0)-robust.

Discard predictions randomly The issue with the above mechanism is that if all predictions
are invalid, it generates no welfare and no revenue. We show how randomization can quell
that issue. One trivial solution is to discard all predictions with probability β, and trust all
predictions completely with probability (1 − β). That is, with probability β charge each
agent her vanilla VCG price and with probability 1−β charge each agent her weakest-type
price (5.1) (and exclude any agent who is overcharged). This mechanism achieves strong
consistency and robustness ratios. Indeed, its expected welfare is β · OPT+(1 − β) ·∑

i:∆err
i ≥0 θi[α

∗] and its expected revenue is β · VCG+ (1− β) · (
∑

i:∆err
i ≥0 θi[α

∗]−∆err
i).

So, it is (1, 1− β)-consistent and (β, β)-robust.
This approach suffers from a major issue: its revenue drops drastically the moment predic-
tions are too aggressive, that is, ∆err

i < 0. In particular, if predictions are too aggressive,
but barely so, this approach completely misses out on any payments from such agents and
drops to the revenue of VCG (which can be drastically smaller than OPT). But, a tiny
relaxation of these predictions would have sufficed to increase revenue significantly and
perform competitively with OPT. One simple approach is to subtract a relaxation param-
eter ηi from the welfare of the weakest type consistent with each prediction with some
probability, and discard the prediction with complementary probability. If ηi + ∆err

i ≥ 0
for all i, then such a mechanism would perform well. The main issue with such an ap-
proach is that the moment ηi + ∆err

i < 0, our relaxation by ηi is still too aggressive and
the performance drastically drops. Our main mechanism Mζ,λ essentially selects the ηi
randomly from a suitable discretization of the ambient type space to “smooth out” this

101

behavior and extract payments from each agent with reasonable probability.

Consistency and robustness ofMζ,λ We determine the consistency and robustness ratios for
a fixed default tuning of our mechanism, namely with ζi = λi = 1 for all agents. For these
parameters, the starting element in the discretization computed in M1,1 uses the unmodified
predictions. The remainder of the discretization is via a doubling search of the welfare interval
[w(0,θ−i), w(θ̃i,θ−i)] with initial step size 1. In contrast to the trivial approach that either trusted
the side information completely or discarded predictions completely,M1,1 does not suffer from
large discontinuous drops in welfare nor revenue.

Theorem 5.3.4. M1,1 is
(
1, 1

1+⌈log2(1+∆VCG
i)⌉

)
-consistent and

(
1

1+⌈log2(1+∆VCG
i)⌉ ,

1
1+⌈log2(1+∆VCG

i)⌉

)
-

robust.

Proof. Consistency: If ∆err
i = 0, Theorem 5.3.2 implies that for ζi = λ = 1, the expected value

enjoyed by agent i is (deterministically) equal to θi[α
∗]. With the same notation as in the proofs

of Theorems 5.3.2 and 5.3.3, we have Pr(i ∈ I) ≥ Pr(ki = k∗
i) = 1/(1+ ⌈log2(1+∆VCG

i)⌉) for
ζi = λi = 1, and k∗

i = 0. So

E[pi] ≥
1

1 + ⌈log2(1 + ∆VCG
i)⌉

(
θi[α

∗]− (w(θi,θ−i)− (w(θ̃i,θ−i) + 1− 20))
)

=
1

1 + ⌈log2(1 + ∆VCG
i)⌉

θi[α
∗].

Robustness: Independent of ∆err
i there always exists at least one k∗

i such that w(θi,θ−i) ≥
w(θ̃i,θ−i)+ ζi− 2k

∗
i λi, so the expected value enjoyed by agent i is at least 1

1+⌈log2(1+∆VCG
i)⌉θi[α

∗].
By the same reasoning, we can lower bound agent i’s expected payment, independent of ∆err

i , by
1

1+⌈log2(1+∆VCG
i)⌉ · p

VCG
i , where pVCGi is agent i’s vanilla VCG payment.

Consistency and robustness, however, do not capture the important effect of how aggressive
or how conservative a prediction is on the performance decay of our mechanism, as explained in
Section 5.3.1 and the plots in Figures 5.2 and 5.3. The mechanism’s performance can furthermore
be greatly improved through high quality hyperparameter selection, which can, for example, be
learned from data [Balcan, 2020, Khodak et al., 2022].

5.4 Other Forms of Side Information
We apply the weakest-type VCG mechanism to three other formats of side information distinctly
different than the model of predictors used in the paper thus far. In each format, the weakest
types are instantiated in a different way.

5.4.1 A more expressive prediction language for expressing uncertainty
In this subsection we establish an avenue for richer and more expressive side information lan-
guages. We show that the techniques we have developed so far readily extend to an even larger

102

more expressive form of side information that allows one to express varying degrees of uncer-
tainty. We now allow the output of Ti(θ−i) to be an entire probability space (Θi,Fi, µi) where
agent i’s ambient type space Θi is the sample space, Fi is a σ-algebra on Θi, and µi is a proba-
bility measure.
Fi induces a partition of Θi into equivalence classes where θi ≡ θ′i if 1[θi ∈ A] = 1[θ′i ∈ A]

for all A ∈ Fi (so the side-information structure does not distinguish between θi and θ′i). Let
A(θi) = {θ′i : θi ≡ θ′i} ∈ Fi be the equivalence class of θi. In this way the σ-algebra Fi deter-
mines the granularity of knowledge being conveyed by the predictor, and the probability measure
µi : Fi → [0, 1] establishes uncertainty over this knowledge. Our model of side information in
the form of a prediction set Ti(θ−i) = Ti considered previously in the paper corresponds to the
σ-algebra Fi = {∅, Ti,Θi \ Ti,Θi} with µi(∅) = µi(Θi \ Ti) = 0 and µi(Ti) = µi(Θi) = 1.

We define the error of a predictor in the natural way. As usual, θ denotes the agents’ (true
and) revealed type profile. Define random variable Xerr

i : Θi → R≥0 by

Xerr
i (θ′i) = w(θi,θ−i)− min

θ̃i∈A(θ′i)
w(θ̃i,θ−i).

Xerr
i is Fi-measurable since it is (by definition) constant on all atoms of Fi (sets A ∈ Fi such

that no nonempty B ⊂ A is in Fi). The error distribution on R≥0 is given by

Pr(a ≤ Xerr
i ≤ b) = µi

({
θ′i ∈ Θi : a ≤ w(θi,θ−i)− min

θ̃i∈A(θ′i)
w(θ̃i,θ−i) ≤ b

})

= µi

(⋃{
A(θ′i) : a ≤ w(θi,θ−i)− min

θ̃i∈A(θ′i)
w(θ̃i,θ−i) ≤ b

})
.

The generalized version of Mζ,λ that receives as input a generalized predictor for each agent
i given by Ti(θ−i) = (Θi,Fi, µi) works as follows. It samples θ′i ∼ Θi according to (Fi, µi),
sets θ̃i = argminθ̂i∈A(θ′i)

w(θ̂i,θ−i), and draws ki ∼unif. {0, . . . , ⌈log2((∆VCG
i + ζi)/λi)⌉}, where

∆VCG
i = w(θ̃i,θ−i) − w(0,θ−i), as before. It then implements the efficient allocation α∗ and

computes a payment for agent i of pi = θi[α
∗]−(w(θi,θ−i)−(w(θ̃i,θ−i)+ζi−2kiλi)), excluding

agents for which pi > θi[α
∗]. Applying Theorems 5.3.2 and 5.3.3 for a fixed θ′i and then taking

expectation over the draw of θ′i yields the following guarantees.
Theorem 5.4.1. The expected value enjoyed by agent i is equal to

Ẽ
θi

[
1− ⌈log+2 ((ζi −Xerr

i)/λi)⌉
1 + ⌈log2((ζi +∆VCG

i)/λi)⌉

]
θi[α

∗]

and the expected payment made by agent i is at least

Ẽ
θi

[(
1− ⌈log+2 ((ζi −Xerr

i)/λi)⌉
1 + ⌈log2((ζi +∆VCG

i)/λi)⌉

)
(θi[α

∗]− (Xerr
i − ζi))

]
− 4(∆VCG

i + ζi)

1 + ⌈log2((ζi +∆VCG
i)/λi)⌉

.

Of course the above discussion assumes the existence of a routine for sampling from the ab-
stract probability space specified by the predictors. We briefly discuss a concrete special form

103

of generalized predictors for which this routine can be concretely described. For each agent i,
Ti(θ−i) outputs (i) a partition (Ai

1, . . . , A
i
m) of the ambient type space Θi into disjoint sets, (ii)

probabilities µi
1, . . . , µ

i
m ≥ 0;

∑
j µ

i
j = 1 corresponding to each partition element, and (iii) for

each partition element an optional probability density function f i
j ;
∫
Ai

j
f i
j = 1. The prediction

represents (i) a belief over what partition element Ai
j the true type θi lies in and (ii) if a density

is specified, the precise nature of uncertainty over the true type within Ai
j . Our model of side

information in the form of a prediction set Ti(θ−i) = Ti ⊆ Θi considered earlier in the paper cor-
responds to the partition (Ti,Θi\ Ti) with µ(Ti) = 1 and no specified densities. The richer model
allows side information to convey finer-grained beliefs; for example one can express quantiles of
certainty, precise distributional beliefs, and arbitrary mixtures of these. Here, Mζ,λ first samples
a partition element Ai

j according to (µi
1, . . . , µ

i
m), and draws ki ∼unif. {0, . . . , Ki} where Ki is

defined as before. If f i
j = None, it uses weakest type θ̃i that minimizes w(θ̃i,θ−i) over θ̃i ∈ Ai

j .
Otherwise, it samples θ̃i ∼ f i

j and uses that as the weakest type.

5.4.2 Constant-parameter agents: types on low-dimensional subspaces
In this section we show how the theory we have developed so far can be used to derive new
revenue approximation results when the mechanism designer knows that each agent’s type be-
longs to some low-dimensional subspace of her ambient type space RΓ

≥0 (these subspaces can be
different for each agent).

This is a different setup from the previous sections. So far, we have assumed that Θi = RΓ
≥0

for all i, that is, there is an ambient type space that is common to all the agents. Side information
in the form of predictors Ti : ×j ̸=iRΓ

≥0 → RΓ
≥0 are given as input to the mechanism designer, with

no assumptions on quality/correctness (and our guarantees in Section 5.3.1 were parameterized
by the quality of the predictors). Here, we assume the side information that each agent’s type
lies in a particular subspace is guaranteed to be valid. Two equivalent ways of stating this setup
are (1) that Θi is the corresponding subspace for agent i and the mechanism designer receives no
additional predictor Ti or (2) Θi = RΓ

≥0 and Ti(θ−i) = RΓ
≥0 ∩ Ui where Ui is a subspace of RΓ,

and the mechanism designer has the additional guarantee that θi ∈ Ui (so Ti is a correct predictor
in that the set it outputs actually contains the agent’s true type). We shall use the language of the
second interpretation.

In this setting, while the predictors are correct (which implies ∆err
i (θ−i) ≥ 0), their errors

∆err
i can be too large to meaningfully use our previous guarantees. More precisely, since Ti

outputs an entire linear subspace of the ambient type space, it contains low welfare types—in
particular it contains the zero type that creates welfare w(0,θ−i). So, our randomized mechanism
from Section 5.3 is not useful here as its revenue will be no better than vanilla VCG.

In this section we show how to fruitfully use the information provided by the subspaces
U1, . . . , Un within the framework of our meta-mechanism. We assume Θi = [1, H]Γ, thereby
imposing a lower bound of 1 (this choice of lower bound is not important, but the knowledge of
some lower bound is needed) and an upper bound of H on agent values. The following more
direct bound on pi in terms of the weakest type’s value will be needed.
Lemma 5.4.2. Let Ti be a predictor such that ∆err

i (θ−i) ≥ 0. Its weakest-type VCG price pi given
in Equation (5.1) satisfies pi ≥ θ̃i[α

∗], where θ̃i is the weakest type that minimizes w(θ̃i,θ−i) over

104

θ̃i ∈ Ti(θ−i) and α∗ is the efficient allocation achieving w(θ).

Proof. Let θ̃i be the weakest type in Θi with respect to θ−i. The utility for agent i underM is

θi[α
∗]− pi =

n∑
j=1

θj[α
∗]− min

θ′i∈Ti(θ−i)

(
max
α∈Γ

∑
j ̸=i

θj[α] + θ′i[α]

)

=
n∑

j=1

θj[α
∗]−

(
max
α∈Γ

∑
j ̸=i

θj[α] + θ̃i[α]

)

≤
n∑

j=1

θj[α
∗]−

(∑
j ̸=i

θj[α
∗] + θ̃i[α

∗]

)
= θi[α

∗]− θ̃i[α
∗],

so pi ≥ θ̃i[α
∗], as desired.

We now describe the formal ingredients and present our mechanism. For each i, the mech-
anism designer knows that θi lies in a k-dimensional subspace Ui = span(ui,1, . . . , ui,k) of RΓ

where each ui,j ∈ RΓ
≥0 lies in the non-negative orthant and {ui,1, . . . , ui,k} is an orthonormal ba-

sis for Ui (Ui can depend on θ−i). For simplicity, assume H = 2a for some positive integer a. Let
Li,j = {λui,j : λ ≥ 0}∩[0, H]Γ be the line segment that is the portion of the ray generated by ui,j

that lies in [0, H]Γ. Let yi,j be the endpoint of Li,j with ∥yi,j∥∞ = H (the other endpoint of Li,j is
the origin). Let z1i,j = yi,j/2 be the midpoint of Li,j , and for ℓ = 2, . . . , log2H let zℓi,j = zℓ−1

i,j /2

be the midpoint of 0zℓ−1
i,j . So ∥zlog2 Hi,j ∥∞ = 1. We terminate the halving of Li,j after log2H steps

due to the assumption that θi ∈ [1, H]Γ. For every k-tuple (ℓ1, . . . , ℓk) ∈ {1, . . . , log2H}k, let

θ̃i(ℓ1, . . . , ℓk) =
k∑

j=1

z
ℓj
i,j.

Furthermore, let

Wℓ =

{
(ℓ1, . . . , ℓk) ∈ {1, . . . , log2H}

k : min
j

ℓj = ℓ

}
.

The sets W1, . . . ,Wlog2 H form a partition of {1, . . . , log2H}k into levels, where Wℓ is the set of
points with ℓ∞-distance H/2ℓ from the origin.

Our mechanism is the following modification of weakest-type VCG, which we denote by
Mk.
MechanismMk

Input: correct subspace predictions U1(θ−1), . . . , Un(θ−n).
• Agents asked to reveal types θ1, . . . , θn.
• Let α∗ = argmaxα∈Γ

∑n
i=1 θi[α] be the efficient allocation. For each agent i let

pi = w(θ̃i(ℓi,1, . . . , ℓi,k),θ−i)−
∑
j ̸=i

θj[α
∗]

105

where ℓi is chosen uniformly at random from the set {1, . . . , log2H} and (ℓi,1, . . . , ℓi,k) is
chosen uniformly at random from Wℓi .

• Let I = {i : θi[α∗]− pi ≥ 0} . If agent i /∈ I , i is excluded and receives zero utility (zero
value and zero payment).

We now state and prove the welfare and revenue guarantees satisfied byMk. In the proof, we
use the notation θi ⪰ θ′i to mean θi[α] ≥ θ′i[α] for all α ∈ Γ. We have θi ⪰ θ′i =⇒ w(θi,θ−i) ≥
w(θ′i,θ−i).
Theorem 5.4.3. Mk satisfies E[welfare] ≥ OPT

log2 H
and E[revenue] ≥ OPT

2k(log2 H)k
.

Proof. We have E[welfare] =
∑n

i=1 θi[α
∗]·Pr(w(θi,θ−i) ≥ w(θ̃(ℓi,1, . . . , ℓi,k),θ−i)) ≥

∑n
i=1 θi[α

∗]·
Pr(ℓi = log2H) = 1

log2 H
· OPT (since θi ⪰ θ̃i(log2H, . . . , log2H)). The proof of the rev-

enue guarantee relies on the following key claim: for each agent i, there exists ℓ∗i,1, . . . , ℓ
∗
i,k ∈

{1, . . . , log2H} such that θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) ⪰ 1

2
θi. To show this, let θji denote the projection of θi

onto uj , so θi =
∑k

j=1 θ
j
i since {ui,1, . . . , ui,k} is an orthonormal basis. Let ℓ∗i,j = min{ℓ : θji ⪰

zℓi,j}. Then, z
ℓ∗i,j
i,j ⪰ 1

2
θji , so

θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) =

k∑
j=1

z
ℓ∗i,j
i,j ⪰

k∑
j=1

1

2
θji =

1

2
θi.

We now bound the expected payment. Let ℓ∗i = minj ℓ
∗
i,j . We have

E[pi] ≥ E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
· Pr

(
(ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
)

=
1

|Wℓ∗i
| log2H

· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

≥ 1

log2H((log2H)k − (log2H − 1)k)
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

≥ 1

k(log2H)k
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

since the probability of obtaining the correct type θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) can be written as the probability

of drawing the correct “level” ℓ∗i ∈ {1, . . . , log2H} times the probability of drawing the correct
type within the correct level Wℓ∗i

. We bound the conditional expectation with Lemma 5.4.2:

E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
≥ θ̃i(ℓ

∗
i,1, . . . , ℓ

∗
i,k)[α

∗] ≥ 1

2
· θi[α∗].

Finally,

E[revenue] =
n∑

i=1

E[pi] ≥
1

2k(log2H)k
·

n∑
i=1

θi[α
∗] =

1

2k(log2H)k
·OPT,

as desired.

106

Mk can be viewed as a generalization of the logH revenue approximation in the single-
item limited-supply setting that is achieved by a second-price auction with a uniformly random
reserve price from {H/2, H/4, . . . , 1} [Goldberg et al., 2001] (and it recovers that guarantee
when k = 1). Our results apply not only to auctions but to general multidimensional mechanism
design problems such as the examples presented in Section 5.1.

5.4.3 Revenue-optimal Groves mechanisms given a known prior
In this section we consider a textbook mechanism design setup wherein the mechanism designer
has access to a joint prior distribution over a joint type space Θ ⊆ ×n

i=1RΓ
≥0 over the agents.

We formulate the design of the Groves mechanism that maximizes expected revenue over the
prior subject to no other constraints other than IC and IR (in particular efficiency is no longer
a constraint as in Section 10.2.1). We show that the problem reduces to n independent single-
parameter optimization problems for each agent, though we do not pursue the issue of deriving
a closed form/more explicit characterization. The optimization problem for each agent depends
on that agent’s weakest type.

For each agent i, the revealed type vector θ−i of all other agents induces a conditional distri-
bution Di over agent i’s type. The mechanism designer can then optimize over that conditional
distribution directly, and separately, for each agent. The payment-maximizing Groves mecha-
nism can therefore be written as:

hi(θ−i) = argmax
w≥min

θ̃i∈supp(Di)
w(θ̃i,θ−i)

E
θ̂i∼Di

[(
θ̂i[α

∗(θ̂i,θ−i)]− w(θ̂i,θ−i) + w
)
1
[
w ≤ w(θ̂i,θ−i)

]]
where supp(Di) is the support of Di. It charges agent i a payment of hi(θ−i) −

∑
j ̸=i θj[α

∗],
excluding agents who are charged more than their value from the final allocation (that is, agents
for which hi(θ−i) > w(θ)). The weakest type in agent i’s type space is inherently baked into the
optimization to compute hi(θ−i). Indeed, the welfare contributed by agent i is lower bounded
by minθ̃i∈supp(Di)

w(θ̃i,θ−i). If Di is supported on the entire ambient type space RΓ
≥0, the weak-

est type is the zero type, and welfare is lower bounded by w(0,θ−i), so the expected payment
extracted by hi(θ−i) is lower bounded by the expected vanilla VCG payment.

Finally, we remark that the single-parameter optimization problem to compute hi(θ−i) really
only involves a two-dimensional joint distribution over (θ̂i[α∗(θ̂i,θ−i)], w(θ̂i,θ−i)) ∈ R2, that is,
the induced joint distribution over agent i’s value in the efficient allocation and the welfare she
creates (rather than the full type distribution which is |Γ| dimensional).

Sale of a single indivisible item to multiple bidders In the sale-of-a-single-item setting with
independent, symmetric, and regular (a distribution with cumulative density function F : R →
[0, 1] and continuous probability density function f is regular if φ(v) = v − 1−F (v)

f(v)
is mono-

tonically increasing in v) prior distributions over bidders’ values, we show that the above ap-
proach recovers Myerson’s revenue optimal auction [Myerson, 1981] which in this case is a
second-price auction with reserve price φ−1(0). We denote bidder i’s true and revealed value
by vi. In the single-item setting the efficient allocation gives the item to the highest bidder, so
all other bidders receive and pay nothing. Let i = 1 be the index of the highest bidder and

107

let i = 2 be the index of the second-highest bidder. Then, w(v̂1,v−1) = max{v̂1, v2} and
v̂1[α

∗(v̂1,v−1)] = v̂1 · 1[v̂1 > v2] (we abbreviate α∗(v̂1,v−1) as just α∗ in the following). Let F
denote the cumulative density function that is common to all bidders and let f be its probability
density function. We have

h1(v−1) = argmax
w≥v2

Ê
v1

[(v̂1[α
∗]− w(v̂1,v−i) + w) · 1[w ≤ w(v̂1,v−1)]]

= argmax
w≥v2

Ê
v1

[(v̂1[α
∗]− w(v̂1,v−i) + w) · 1[w ≤ w(v̂1,v−1)] | v̂1 ≥ v2] · Pr(v̂1 ≥ v2)

+ Ê
v1

[(v̂1[α
∗]− w(v̂1,v−i) + w) · 1[w ≤ w(v̂1,v−1)] | v̂1 < v2] · Pr(v̂1 < v2)

= argmax
w≥v2

Ê
v1

[w · 1[w ≤ v̂1] | v̂1 ≥ v2] · (1− F (v2)) + (w − v2) · 1[w ≤ v2] · F (v2)︸ ︷︷ ︸
= 0 as w≥v2

= argmax
w≥v2

w(1− F (w))

which is achieved at h1(v−1) = max{v2, φ−1(0)} where φ(w) = w− 1−F (w)
f(w)

is the virtual value
function. This is precisely a second-price auction with reserve price φ−1(0), which is equivalent
to Myerson’s optimal auction in this setting (symmetric, regular, and independent bidder priors).

It is clear that in general settings this approach does not yield the revenue optimal auction.
Indeed, it is well known that the revenue optimal mechanism in multi-item settings is random-
ized [Conitzer and Sandholm, 2002, Hart and Nisan, 2013, Hart and Reny, 2015] but the mech-
anism we present is deterministic. Furthermore, we limit ourselves to a subclass of Groves
mechanisms which place a strong restriction on the set of allocations that can be realized—a
bidder receives either her winning bundle in the efficient allocation or the empty bundle—while
Myerson’s revenue-optimal auction even in more general single-item settings can sell the item to
a bidder other than the highest bidder.

5.5 Beyond VCG: Weakest-Type Affine-Maximizer Mechanisms
An affine-maximizer (AM) mechanism [Roberts, 1979] is a generalization of VCG that modifies
the allocation and payments via agent-specific multipliers ω = (ω1, . . . , ωn) ∈ R≥0 and an
allocation-based boost function τ : Γ → R≥0. We define the weakest-type AM in the following
natural way (adopting the setup and notation of Section 5.1.1).

The weakest-type AM parameterized by ω, τ works as follows. Agents’ types θ1, . . . , θn are
elicited, the allocation used is

αω,τ = argmax
α∈Γ

n∑
i=1

ωiθi[α] + τ(α),

and bidder i is charged payment

pi =
1

ωi

(
min

θ̃i:(θ̃i,θ−i)∈Θ

(
max
α∈Γ

∑
j ̸=i

ωjθj[α] + ωiθ̃i[α] + τ(α)

)
−

(∑
j ̸=i

ωjθj[αω,τ] + τ(αω,τ)

))
.

108

In a vanilla AM there is no minimization and no ωiθ̃i[α] term, so it is already clear that the
weakest-type AM is a strict revenue improvement over the vanilla AM. We now generalize The-
orem 5.1.1 to the affine-maximizer setting.
Theorem 5.5.1. For any ω ∈ Rn

≥0 and τ : Γ → R≥0, the weakest-type AM parameterized
by ω and τ is incentive compatible and individually rational. Furthermore, if Θ is convex, it
is revenue optimal among all incentive compatible and individually rational mechanisms that
implement the allocation function θ 7→ argmaxα∈Γ

∑n
i=1 ωiθi[α] + τ(α).

Proof. The proof involves an identical application of revenue equivalence as in the proof of
Theorem 5.1.1. The key property required is that weakest-type AMA payment leaves the weakest
type with zero utility, that is, the weakest type’s IR constraint is binding, which is immediate
from the payment formula. Therefore, any payment rule that generates strictly more revenue
must violate individual rationality on some type profile of the form (θ̃i,θ−i), where θ̃i minimizes
w(θ̃i,θ−i) over all θ̃i such that (θ̃i,θ−i) ∈ Θi.

Let OPT(ω, λ) =
∑n

i=1 θi[αω,λ] be the welfare of the (ω, λ)-efficient allocation. All of the
guarantees satisfied byM carry over toM(ω, λ), the only difference being the modified bench-
mark of OPT(ω, λ). Of course, OPT(ω, λ) ≤ OPT is a weaker benchmark than the welfare of
the efficient allocation. However, the class of affine maximizer mechanisms is known to achieve
much higher revenue than the vanilla VCG mechanism. We leave it as a compelling open ques-
tion to derive even stronger guarantees on mechanisms of the formM(ω, λ) when the underlying
affine maximizer is known to achieve greater revenue than vanilla VCG. In any case, if one has a
tuned high-revenue AM on hand, our techniques (weakest-type AM and randomization) can be
appended as a post-processor to further improve revenue.

5.6 Conclusions and Future Research
We developed a versatile new methodology for multidimensional mechanism design that incor-
porates side information about agent types with the bicriteria goal of generating high social wel-
fare and high revenue simultaneously. We designed mechanisms for a variety of side information
formats. Our starting point was the weakest-type VCG mechanism, which generalized the mech-
anism of Krishna and Perry [1998]. A randomized tunable version of that mechanism achieved
strong welfare and revenue guarantees that were parameterized by errors in the side information,
and could be tuned to boost its performance. We additionally applied the weakest-type mecha-
nism to three other forms of side information: predictions that could express uncertainty, agent
types known to lie on low-dimensional subspaces of the ambient type space, and a textbook
mechanism design setting where the side information is in the form of a known prior distribution
over agent types. Finally, we showed how to generalize our main results to affine-maximizer
mechanisms.

There are many new research directions that stem from our work. For example, how far off
are our mechanisms from the welfare-versus-revenue Pareto frontier? The weakest-type VCG
mechanism is one extreme point, but what does the rest of the frontier look like? One possible
approach here would be to extend our theory beyond VCG to the larger class of affine maximizers

109

(which are known to contain higher-revenue mechanisms)—we provided some initial ideas in
Section 5.5 but that is only a first step.

Computation and practical auction design: An important facet that we have only briefly
discussed is computational complexity. The computations in our mechanism involving weak-
est types scale with the description complexity of Ti(θ−i) (e.g., the number of constraints, the
complexity of constraints, and so on). An important question here is to understand the com-
putational complexity of our mechanisms as a function of the differing (potentially problem-
specific) language structures used to describe the predictors Ti(θ−i). In particular, the kinds of
side information that are accurate, natural/interpretable, and easy to describe might depend on
the specific mechanism design domain. Expressive bidding languages for combinatorial auctions
have been extensively studied with massive impact in practice [Sandholm, 2007, 2013]. Can a
similar methodology be developed for side information? Chapter 6 takes the first steps along
the computational vein, and Chapter 7 studies more expressive side information specifications.
Another important direction here is the exploration of the weakest type idea in the realm of
mechanism design problems with additional practically-relevant constraints. Examples include
mechanism design with investment incentives [Akbarpour et al., 2021], obviously strategy-proof
mechanisms [Li, 2017], and other concrete market design applications like sourcing [Sandholm,
2013], catch-share reallocation to prevent overfishing [Bichler et al., 2019], and spectrum auc-
tions [Goetzendorff et al., 2015, Leyton-Brown et al., 2017].

Improved revenue when there is a known prior: Another direction is to improve the revenue
of the Bayesian weakest-type VCG mechanism of Krishna and Perry when there is a known prior
over agents’ types. Here, the benchmark would be efficient welfare in expectation over the prior.
Krishna and Perry’s mechanism uses weakest types with respect to the prior’s support to guar-
antee efficient welfare in expectation, but its revenue could potentially be boosted significantly
by compromising on welfare as in our random expansion mechanism. We took some first steps
in Section 5.4.3, but many open questions remain. For example, is there a closed form charac-
terization of the revenue-maximizing Groves mechanism? Can those ideas be applied to revenue
optimization of weakest-type affine maximizer mechanisms? Another direction here is to study
the setting when the given prior might be inaccurate. Can our random expansion mechanism be
used to derive guarantees that depend on the closeness of the given prior to the true prior? Such
questions are thematically related to robust mechanism design [Bergemann and Morris, 2005].
Another direction along this vein is to generalize our mechanisms to depend on a known prior
over prediction errors.

110

Chapter 6

Weakest Bidder Types and New
Core-Selecting Combinatorial Auctions

The design of combinatorial auctions (CAs) is a complex task that requires careful engineering
along several axes to best serve the application at hand. Just some of these axes are: taming
cognitive and communication costs of eliciting and understanding bidders’ inherently combi-
natorial valuations, tractable computation and optimization of economically efficient outcomes
that allocate resources to those that value them the most, and determining prices that simplify
bidders’ incentives while generating acceptable revenues for the seller. These complexities are
most evident in fielded applications of CAs including sourcing [Sandholm, 2013, Hohner et al.,
2003, Sandholm et al., 2006], spectrum allocation [Cramton, 2013, Leyton-Brown et al., 2017],
and others.

The focus of the present chapter is on better pricing rules for CAs. VCG is economically
efficient and incentive compatible—a property of great practical importance since it levels the
playing ground for bidders by making it worthless to strategize about their individual bids. But,
the VCG auction has two major complementary issues (among others [Ausubel and Milgrom,
2006]) that prevent it from being practically viable: low revenue and prices that are not in the
core. The latter means that some bidders might end up paying so little for their winnings that
others who offered more for those same items would take issue. Core-selecting CAs fix this
issue with prices that ensure no coalition of bidders plus the seller would want to renegotiate for
a better deal, but these give up on incentive compatibility. Therefore, most core-selecting CA
designs use core prices that minimize bidders’ incentives to deviate from truthful bidding.

Core-selecting CAs have been used to auction licenses for wireless spectrum by a number
of countries’ governments including Australia, Canada, Denmark, Ireland, Mexico, the Nether-
lands, Portugal, Switzerland, the United Kingdom, and others, generating many billions of dol-
lars in revenue [Cramton, 2013, Palacios-Huerta et al., 2024]. Ausubel et al. [2017] review some
of the key design choices of the FCC incentive auction that was completed in the United States
in 2017. They suggest that some instances of winners paying zero for certain packages despite
losers bidding competitively [Ausubel and Baranov, 2023] could have been avoided with a core-
selecting payment rule instead of the VCG rule adopted by the FCC (though a core-selecting rule
would have introduced other practical difficulties in other stages of the auction). While the most
prominent real-world deployment of core-selecting CAs is probably spectrum auctions, their

111

use has been proposed for other important applications such as electricity markets [Karaca and
Kamgarpour, 2019], advertisement markets [Goetzendorff et al., 2015, Niazadeh et al., 2022],
and auctions for wind farm development rights [Ausubel and Cramton, 2011].

In this chapter we introduce a new class of core-selecting CAs that improve upon prior de-
signs by taking advantage of bidder information available to the auction designer through con-
straints on the bidders’ type spaces. Our starting point is the weakest-type VCG (WT) auction,
which is a type-space-dependent improvement of VCG [Krishna and Perry, 1998, Balcan et al.,
2023]. Our core-selecting CAs build upon the WT auction, and minimize the sum of bidders’
incentives to deviate from truthful bidding. They generalize and improve upon the core-selecting
CA designs that have been developed in the literature so far, some of which have been success-
fully used in spectrum auctions [Day and Raghavan, 2007, Day and Milgrom, 2010, Erdil and
Klemperer, 2010, Day and Cramton, 2012].

Our Contributions
First, we show that information expressed by type spaces can overcome the following well-
known impossibility result due to Othman and Sandholm [2010] and Goeree and Lien [2016]:
under unrestricted type spaces either (i) VCG is not in the core in which case no IC core-selecting
CA exists or (ii) VCG is the unique IC core-selecting CA. In general CAs where bidders’ valua-
tions exhibit complementarities (that is, the value of a bundle is more than the sum of its parts),
VCG is typically not in the core. VCG is in the core only under strict conditions on bidder val-
uations that rule out complementarity (like buyer-submodularity or gross-substitutes [Ausubel
and Milgrom, 2002]). We provide a revised and more general version of the impossibility re-
sult. Our result (Theorem 6.2.1) states that either (i) WT is not in the core in which case no IC
core-selecting CA exists, (ii) WT is the unique IC core-selecting CA, or (iii) there are infinitely
many IC core-selecting CAs including WT (and we characterize all such CAs). In particular,
vanilla VCG has no bearing on the existence of IC core-selecting CAs (when type spaces are
unrestricted VCG and WT are identical, so our result recovers the one by Othman and Sandholm
[2010] and Goeree and Lien [2016] in that case).

Second, we devise a new family of type-space-dependent core-selecting CAs that minimize
the sum of bidders’ incentives to deviate from truthful bidding. Typical core-selecting CAs
choose prices that lie on the minimum-revenue face—referred to as the minimum-revenue core
(MRC)—of the core polytope [Parkes et al., 2001, Day and Raghavan, 2007, Day and Milgrom,
2010, Erdil and Klemperer, 2010, Day and Cramton, 2012]. Day and Milgrom [2010] show that
MRC points minimize bidders’ total incentive to deviate from truthful bidding (and therefore
minimize incentives to deviate in a Pareto sense as well). Our new design chooses core prices
that minimize revenue subject to the additional constraint that they lie above WT. We generalize
Day and Milgrom’s result (which hinges on the assumption of unrestricted typespaces), and show
that our revised version of the minimum-revenue core provides optimal incentives for bidders.

Third, we develop new constraint generation routines for computing WT prices. We com-
pare two linear programming formulations of WT price computation: one is due to Balcan et al.
[2023] and the other is based on Bikhchandani and Ostroy [2002]. Both linear programs have
an exponential number of constraints, so we develop constraint generation routines to solve
them. In our experiments, the Balcan et al. [2023] formulation leads to significantly smaller

112

constraint-generation solve times and iterations. On most instances, WT price computation via
our constraint generation routine only adds a modest run-time overhead to the cost of winner
determination.

Finally, we present proof-of-concept experiments that evaluate the incentive, revenue, and
fairness properties of our new core-selecting CAs. We coin and implement three new core-
selecting payment rules that select payments on our revised MRC. Our implementation uses the
quadratic programming and core-constraint generation technique developed by Day and Cramton
[2012].

Related Work
Weakest types The notion of a weakest type consistent with an agent’s type space originates
from the seminal works of Myerson and Satterthwaite [1983] and Cramton et al. [1987] in the
context of efficient trade. It was first presented in an auction context by Krishna and Perry [1998],
and later modified by Balcan et al. [2023] to derive revenue guarantees that depend on measures
of informativeness of the type space. The weakest-type auction has found applications in other
mechanism design settings (like digital goods auctions) as well [Lu et al., 2024].

Equilibrium bidding strategies in core-selecting CAs As core-selecting CAs are not gener-
ally incentive compatible, there is a sizable literature that studies bidding strategies and equi-
librium outcomes in core-selecting CAs. Such work has generally been limited to very small
CA instances with numbers of items and bidders both in the single digits. Goeree and Lien
[2016] derive equilibrium strategies for the core-selecting CA of Day and Cramton [2012] and
show that revealed core prices can be further away from the true core than VCG. Ausubel and
Baranov [2020] are more optimistic and demonstrate the opposite phenomenon, providing more
justification for the use of core-selecting CAs in practice. Bichler et al. [2013] run lab experi-
ments to study bidding behavior and efficiency of the core-selecting combinatorial clock auction
format. Ott and Beck [2013] study overbidding equilibria that can arise in core-selecting CAs.

Core-selecting CA design and computation Erdil and Klemperer [2010] introduce the idea of
using “reference points” other than VCG [Day and Cramton, 2012] to find closest MRC prices.
Bünz et al. [2022] perform a computational evaluation of different core-selecting payment rules
that differ in their underlying reference point. Their focus is on computing equilibrium bidding
strategies (using modern Bayes-Nash equilibrium solvers [Bosshard et al., 2017]) to evaluate
true efficiency, and therefore their evaluation is limited to very small auction instances. These
works study the properties of different core points that lie on the same minimum-revenue core.
We redefine the minimum-revenue core to depend on the type space information known to the
auction designer.

Bünz et al. [2015] provide improvements to the original core-constraint generation algo-
rithms of Day and Raghavan [2007] and Day and Cramton [2012]. Niazadeh et al. [2022] develop
non-exact algorithms that converge to core prices (though their experimental evaluation is in a
not-fully-combinatorial advertising setting where winner determination is in P, in contrast to the
general CA setting where winner determination is NP-complete). Generalizing their algorithms

113

to take advantage of type space information is an interesting direction for future research. Goel
et al. [2015], Markakis and Tsikiridis [2019] devise incentive compatible CAs that approximate
the core revenue. A drawback of this line of work is that it sacrifices efficiency, which is one
of the main tenets that motivates the need for core-selecting CAs in the first place. Goetzendorff
et al. [2015] design new bidding languages for auctions with many items and respective tech-
niques for core pricing; Moor et al. [2016] study core-selecting auctions when some items might
no longer be available after the auction is run; Othman and Sandholm [2010] develop an iterative
core-selecting CA that elicits bids over multiple rounds.

Core selection beyond CAs Some work has studied the design of core-selecting mechanisms
in markets beyond auctions. Examples include combinatorial exchanges [Rostek and Yoder,
2015, Bichler and Waldherr, 2017], reallocative mechanisms like the FCC incentive auction [Ros-
tek and Yoder, 2023], and markets with financially-constrained buyers [Batziou et al., 2022,
Bichler and Waldherr, 2022].

6.1 Problem Formulation and Background on Core-Selecting
CAs

In a combinatorial auction (CA) there is a set M = {1, . . . ,m} of indivisible items to be auc-
tioned off to bidders N = {1, . . . , n} who can submit bids for distinct bundles (or packages) of
items. Bidder i reports to the auction designer her valuation vi : 2

M → R≥0 that encodes the
maximum value vi(S) she is willing to pay for every distinct bundle of goods S ⊆ M . Let v =
(v1, . . . , vn) denote the valuation profile of all bidders, and let v−i = (v1, . . . , vi−1, vi+1, . . . , vn)
denote the profile of bids excluding bidder i. For C ⊆ N let vC = (vj)j∈C and let v−C =
(vj)j∈N\C . We assume bidders report their valuations in the XOR bidding language [Sandholm,
2002a, Nisan, 2000], under which a bidder can only win at most one of the bundles she ex-
plicitly placed a nonzero bid for. For bidder i, let Bi ⊆ 2M be the set of bundles she bid
on (assume for notational convenience that each bidder i implicitly submits vi(∅) = 0). Let
Γ = Γ(B1, . . . , Bn) ⊆ B1 × · · · × Bn denote the set of feasible allocations, that is, the set of
partitions S1, . . . , Sn of M with Si ∈ Bi for each i and Si∩Sj = ∅ for each i, j. We use boldface
S = (S1, . . . , Sn) ∈ Γ(B1, . . . , Bn) to denote a feasible allocation.

Before bids/valuations are submitted, bidder i’s valuation vi, also called her type, is her own
private information. The auction designer might have some prior information about the bidders,
and that is modeled by the joint type space of the bidders, denoted Θ ⊆ ×i∈NR2m . The auction
designer knows that v ∈ Θ. Given v−i, let Θi(v−i) = {v̂i : (v̂i,v−i) ∈ Θ} be the projected
type space of bidder i. So, after seeing the revealed bids v−i of all other bidders, the auction
designer knows vi ∈ Θi(v−i). This model of type spaces begets a rich and expressive language of
bidder information available to the auction designer—Θ can represent any statement of the form
“the joint valuation profile v of all bidders satisfies property P ” (Balcan et al. [2023] provide
concrete examples). The typical assumption in mechanism design is an unrestricted type space
Θ = ×i∈NR2m

≥0 (what is usually assumed is the existence of a known prior distribution over
the type space). In contrast, we will be concerned with explicit representations of the auction

114

designer’s knowledge via the type space and how that influences both practical computation and
the auction design itself.

Efficient auctions An auction is determined by its allocation rule and its payment rule. In
this chapter we are concerned with efficient auctions. An efficient auction selects the efficient
(welfare-maximizing) allocation:

S∗ = (S∗
1 , . . . , S

∗
n) = argmax

S∈Γ

∑
j∈N

vj(Sj).

The winner determination problem of computing the efficient allocation is NP-complete (by a
reduction from weighted set packing), but solving its integer programming formulation is gener-
ally a routine task for modern integer programming solvers. Let w(v) = maxS∈Γ

∑
j∈N vj(Sj)

denote the efficient welfare.
We recall the definitions of the VCG and WT mechanisms from the previous chapter, rewrit-

ten here in the context of CAs.

Vickrey-Clarke-Groves (VCG) Auction The classical auction due to Vickrey [1961], Clarke
[1971], and Groves [1973] (VCG) chooses the efficient allocation S∗, and charges bidder i a
payment of

pVCGi (v) = w(0,v−i)−
∑
j ̸=i

vj(S
∗
j).

Let pVCG = (pVCG1 , . . . , pVCGn) denote the vector of VCG payments. VCG is incentive compatible
and individually rational. Generally, to implement the VCG auction one must solve winner
determination n + 1 times—once to compute w(v) and the efficient allocation, and once per
bidder to compute w(0,v−i) in the formula for pi.

Weakest-Type VCG (WT) Auction The weakest-type VCG (WT) auction [Krishna and Perry,
1998, Balcan et al., 2023] chooses the efficient allocation S∗ achieving welfare w(v) and charges
bidder i a payment of

pWTi (v) = min
ṽi∈Θi(v−i)

w(ṽi,v−i)−
∑
j ̸=i

vj(S
∗
j). (6.1)

In Equation (6.1), the bid vector ṽi achieving the minimum is the weakest type in Θi(v−i). Let
pWT = (pWT1 , . . . , pWTn) denote the vector of WT payments. WT is revenue maximizing among all
efficient, IC, and IR auctions.

Core-Selecting CAs and the Minimum-Revenue Core Let W = {i ∈ N : S∗
i ̸= ∅} be the

set of winning bidders in the efficient allocation S∗. A combinatorial auction is in the core if (i)
it chooses the efficient allocation S∗ and (ii) prices p lie in the core polytope, defined by core
constraints for every group of winning bidders and IR constraints:

Core(v) =

p ∈ RW :

∑
i∈W\C

pi ≥ w(0,vC)−
∑
j∈C

vj(S
∗
j) ∀C ⊆ N,

vi(S
∗
i)− pi ≥ 0 ∀i ∈ W

 . (6.2)

115

This formulation of the core gives rise to a direct interpretation of core prices as “group VCG
prices”: any set of winners must in aggregate pay the externality they impose on the other bid-
ders (our formulation is not the typical formulation of the core, which is a notion originally from
cooperative game theory, but is most convenient from an implementation/mathematical program-
ming perspective as in Day and Raghavan [2007], Day and Cramton [2012], Bünz et al. [2015]).
When W \ C = {i} is a singleton, the core constraint reads pi ≥ pVCGi .

The minimum-revenue core (MRC) is the set MRC = argmin{∥p∥1 : p ∈ Core} that consists
of all core prices of minimal revenue. Day and Raghavan [2007], Day and Milgrom [2010] show
that the MRC captures exactly the set of core prices that minimize the sum of bidders’ incentives
to deviate from truthful bidding. The MRC is not unique and there can be (infinitely) many
MRC prices. Some core-selecting CAs that select unique MRC points that have been proposed
are VCG nearest [Day and Cramton, 2012], which finds the MRC point closest in Euclidean
distance to VCG, and zero nearest [Erdil and Klemperer, 2010], which finds the MRC point
closest in Euclidean distance to the origin.

Since core-selecting CAs are in general not IC, a core-selecting CA only guarantees that
prices are in the revealed core with respect to reported bids. But, from a regulatory viewpoint,
the revealed core is nonetheless a useful solution concept since core constraints prevent any group
of bidders from lodging a meaningful complaint based on their actual bids [Bünz et al., 2022].

6.2 Impossibility of IC Core-Selecting CAs
We revisit the following dichotomy for core-selecting CAs when type spaces are unrestricted [Go-
eree and Lien, 2016, Othman and Sandholm, 2010]: either (i) VCG is not in the core which
implies no IC core-selecting auction exists or (ii) VCG is in the core and is the unique IC
core-selecting auction. That dichotomy relies on the assumption that Θ is unrestricted, that
is, Θ = R2m

≥0 . We revise and generalize that result to depend on bidders’ type spaces. The proof
relies on the revenue optimality of WT prices subject to efficiency, IC, and IR [Balcan et al.,
2023, Krishna and Perry, 1998].
Theorem 6.2.1. Let Θ be compact and connected. Let v be the vector of bidders’ true valuations.
If pWT(v) /∈ Core(v), no incentive compatible core-selecting CA exists. Otherwise, let C ⊆ 2N

be the set of core constraints that pWT satisfies with equality. Let C′ = {C ′ ⊆ N : C ′ ∩ C =
∅ ∀C ∈ C} and for C ′ ∈ C′ let

s(C ′) =
∑

i∈W\C′

pWTi − w(0,vC′) +
∑
j∈C′

vj(S
∗
j)

be the slack of the C ′-core constraint. Then for any C ′ ∈ C′ all prices in the set{(
pWTW∩C′ − ε,pWTW\C′

)
: ∥ε∥1 ≤ s(C ′), ε ∈ RW∩C′

≥0

}
are in the core and are attainable via an incentive compatible CA.

Proof. If pWT /∈ Core(v), it must be the case that for any p ∈ Core(v) there exists i such that
pi > pWTi . This means no IC core-selecting CA can exist because pWT is bidder-wise payment
optimal subject to efficiency, IC, and IR [Balcan et al., 2023].

116

If pWT ∈ Core(v), the price vector (pWTW∩C′ − ε,pWTW\C′) is also in the core for any ε with
∥ε∥1 ≤ s(C ′) by construction. We now argue that there exists an IC auction that yields these
prices. Consider the efficient Groves mechanism that uses pivot terms

hi(v−i) = ti · w(0,v−i) + (1− ti) · min
ṽi∈Θi(v−i)

w(ṽi,v−i)

where ti ∈ [0, 1] is a parameter that does not depend on i’s revealed type vi. Such a Groves
mechanism is IC and, since it produces payments between VCG and WT, IR. By continuity, there
exist parameters t = ((ti)i∈W∩C′ ,0) so that the Groves mechanism produces prices (pWTW∩C′ −
ε,pWTW\C′).

Theorem 6.2.1 implies that if WT is in the core, there is a potential continuum of IC core-
selecting payment rules obtained by decreasing WT prices along non-binding faces of the core.
In particular, the existence of IC core-selecting CAs does not depend on VCG prices but on WT
prices. WT and VCG coincide when type spaces do not convey sufficient information about
the additional welfare created by a bidder: pWTi = pVCGi if and only if minṽi∈Θi(v−i) w(ṽi,v−i) =
w(0,v−i), which says that the information conveyed by Θi(v−i) about bidder i is so weak that
it cannot even guarantee that i’s presence adds any nonzero welfare to the auction. In this case,
Theorem 6.2.1 recovers the impossibility result of Othman and Sandholm [2010] and Goeree and
Lien [2016].

6.3 Our New Core-Selecting CAs and their Properties
In this section we introduce our new class of core-selecting CAs based on weakest types, and
prove that it provides bidders with optimal incentives (by minimizing the sum of bidders’ in-
centives to deviate, therefore providing optimal incentives in a Pareto sense as well) among all
core-selecting CAs. Our result generalizes the result of Day and Milgrom [2010] which was in
the setting of unrestricted type spaces (our result recovers theirs in the unrestricted case).

In Section 6.2 we have shown above that if WT is not in the core, then all core-selecting
CAs necessarily violate incentive compatibility. To measure the incentive violations of a core-
selecting CA, we borrow the notion of an incentive profile from Day and Milgrom [2010]. The
utility profile (resp., deviation profile) of an efficient CA with payment rule p(v) is given by
{µp

i (v)}i∈W (resp. {δpi (v)}i∈W), where

µp
i (v) = max

v̂i

(
vi(Ŝi)− pi(v̂i,v−i)

)
is bidder i’s maximum obtainable utility from misreporting and

δpi (v) = max
v̂i

(
vi(Ŝi)− pi(v̂i,v−i)

)
− (vi(S

∗
i)− pi(vi,v−i)) = µp

i (v)− (vi(S
∗
i)− pi(vi,v−i))

is bidder i’s maximum utility gain over truthful bidding (Ŝ denotes the efficient allocation under
reported bid profile (v̂i,v−i)). Our goal is to define core-selecting payment rules p that minimize
the sum of bidders’ incentives to deviate, which is precisely

∑
i δ

p
i (v). The quantity δpi can be

117

viewed as a form of ex-post regret for truthful bidding for bidder i. Throughout this section, v
denotes the true valuations of the bidders.

The following lemma generalizes Day and Raghavan [2007, Theorem 3.2]; its proof is iden-
tical to theirs.
Lemma 6.3.1. Let p̂ be any payment rule that implements the efficient allocation such that
p̂i ≥ pWTi . Then, µp̂

i (v) ≤ vi(S
∗
i) − pWTi (v) and δp̂i (v) ≤ p̂i(v) − pWTi (v). That is, the maximum

utility winner i can obtain by misreporting under p̂ is no more than her utility under pWT.

Proof. Suppose for the sake of contradiction that there is a misreport v′i for bidder i that gives
her utility more than vi(S

∗
i)− pWTi (v), that is, vi(S ′

i)− p̂i(v
′
i,v−i) > vi(S

∗
i)− pWTi (v) where S′ is

the efficient allocation for bid profile (v′i,v−i). Since p̂i ≥ pWTi , vi(S ′
i)− pWTi (v′i,v−i) ≥ vi(S

′
i)−

p̂i(v
′
i,v−i), which, combined with the above, yields vi(S

′
i) − pWTi (v′i,v−i) > vi(S

∗
i) − pWTi (v).

Incentive compatibility of WT is violated, a contradiction.

The following result is an adaptation of Day and Milgrom [2010, Theorem 2]; the proof is
similar to theirs.
Theorem 6.3.2. Let p̂ be any IR payment rule that implements the efficient allocation such that
p̂i ≥ pWTi . Let v′i denote the misreport for winner i defined by v′i(S

∗
i) = pWTi (v), v′i(S) = 0 for all

S ̸= S∗
i . Then, v′i is a best response for i that gives her utility equal to vi(S

∗
i)− pWTi (v). That is,

under p̂, winner i can always guarantee herself utility equal to what her utility would have been
under pWT.

Proof. Reporting v′i does not change the efficient allocation since pWTi ≥ pVCGi (and i’s VCG price
is her lowest possible misreport that preserves her winning bundle). So, the IR constraint for p̂
requires v′i(S

∗
i) − p̂i(v

′
i,v−i) ≥ 0. Expanding the left-hand side yields v′i(S

∗
i) − p̂i(v

′
i,v−i) =

pWTi (v)−p̂i(v′i,v−i) = vi(S
∗
i)−(w(vi,v−i)−minṽi∈Θi(v−i) w(ṽi,v−i))−p̂i(v′i,v−i). So, vi(S∗

i)−
p̂i(v

′
i,v−i) ≥ w(vi,v−i) − minṽi∈Θi(v−i)w(ṽi,v−i). The right-hand side is precisely i’s utility

under pWT. By Lemma 6.3.1, this constitutes a best response.

Theorem 6.3.2 allows us to characterize the subset of points that minimize the sum of bidders’
incentives to deviate of any upwards closed region. They are exactly the set of points of minimal
revenue. Given a price vector p̂ ∈ RW and any closed region A ⊆ RW , let

MRA(p̂) = argmin {∥p∥1 : p ∈ A, p̂ ≤ p ≤ (vi(S
∗
i))i∈W}

be the set of IR price vectors in A of minimal revenue that lie above p̂.
Theorem 6.3.3. Let A ⊆ RW be upwards closed. Then

MRA(p
WT) ⊆ argmin

{∑
i∈W

δpi (v) : p ∈ A
}
.

Proof. Consider the map on pricing rules p 7→ p′ defined by

p′i(v) =

{
pi(v) pi(v) ≥ pWTi (v)

pWTi (v) pi(v) < pWTi (v).

118

This map satisfies the property that δp
′

i (v) ≤ δpi (v) since if pi(v) ≥ pWTi (v), pi is unchanged,
and otherwise the WT price is used for which δp

WT

i (v) = 0 due to incentive compatibility. So,
for any price vector p ∈ A such that p ≱ pWT, the described map produces p′ such that p′ ∈ A
(since A is upwards closed), p′ ≥ pWT, and p′ has deviation profile no worse than p. It therefore
suffices to consider the subset of A that lies above pWT to find prices in A that minimize the sum
of bidders’ incentives to deviate. For p ≥ pWT we have δpi (v) = pi(v)−pWTi (v) by Theorem 6.3.2.
So minimizing

∑
i δ

p
i is equivalent to minimizing

∑
i pi, which completes the proof.

Let MRC(p̂) = MRCore(p̂) denote the minimum-revenue core above p̂ (this is not the portion
of the vanilla MRC that lies above p̂; it is the minimum-revenue section of the subset of the core
that lies above p̂). Applying Theorem 6.3.3 yields:
Corollary 6.3.4. MRC(pWT(v)) ⊆ argmin

{∑
i∈W δpi (v) : p ∈ Core(v)

}
.

Any payment rule p ∈ MRC(pWT(v)) is therefore incentive optimal in a Pareto sense as well:
there is no other core-selecting p′ such that δp

′

i (v) ≤ δpi (v) for all i and δp
′

i∗ (v) ≤ δpi∗(v) for
some i∗. Corollary 6.3.4 generalizes the results of Day and Raghavan [2007], Day and Milgrom
[2010] since when Θi(v−i) is unrestricted for each agent i, MRC(pWT) = MRC(pVCG) which is
the (unrestricted) minimum-revenue core they consider.

Corollary 6.3.4 gives strong theoretical justification for payment rules that lie on MRC(pWT).
We expand on specific rules in Section 6.5, but as one concrete example one of the rules we
coin—WT nearest—selects the price vector in MRC(pWT) that minimizes Euclidean distance to
pWT. WT nearest is the most direct generalization of the VCG nearest rule proposed by Day
and Cramton [2012] that has been successfully used in spectrum auctions. In order to implement
rules like WT nearest, we need algorithms for computing pWT. That is the topic of the next section
(Section 6.4). We conclude this section with an example illustrating some of the key concepts
introduced so far.
Example 6.3.5. Consider the CA with three items {a, b, c} and 10 single-minded bidders who
submit the following bids: v1(a) = 20, v2(b) = 20, v3(c) = 20, v4(ab) = 28, v5(ac) = 26,
v6(bc) = 23, v7(a) = 10, v8(b) = 10, v9(c) = 10, v10(abc) = 41 (this a slight modification of an
example from Day and Cramton [2012]). Bidders 1, 2, and 3 win in the efficient allocation and
their VCG prices are pVCG = (10, 10, 10). Say

Θ1 = R≥0,Θ2 = {v2(b) ≥ 17},Θ3 = {v3(c) ≥ 15},

so pWT = (10, 17, 15). The core constraints are given by

{p1, p2, p3 ≥ 10, p1 + p2 ≥ 28, p1 + p3 ≥ 26, p2 + p3 ≥ 23, p1 + p2 + p3 ≥ 41} .

The vanilla VCG-nearest point of Day and Cramton [2012] on MRC(pVCG) is (14, 14, 13) and the
WT-nearest point on MRC(pWT) is (11, 17, 15). Figure 6.1 is an illustration of this example.

6.4 Computing Weakest-Type Prices
In this section we develop techniques to compute pWT, which are needed as a subroutine for
computing the payments of our new core-selecting CAs. Balcan et al. [2023] provide an initial

119

𝒑𝒑VCG = (10, 10, 10)

Figure 6.1: Price vectors pVCG and pWT (in red) and their nearest respective minimum-revenue
core points (in yellow, connected by a green line) as derived in Example 6.3.5. MRC(pWT) lies
on a different face of the core than MRC(pVCG) and is of higher revenue.

theoretical investigation of WT computation, and one of our approaches builds upon their for-
mulation, but we are the first to develop practical techniques and evaluate them via experiments.

Recall Bi ⊆ 2M is the set of bundles bidder i bids on, so, for each S ∈ Bi, bidder j submits
her value vi(S) which is the maximum amount she would be willing to pay to win bundle S. For
B = (B1, . . . , Bn), Γ(B) denotes the set of feasible selections of winning bids.

6.4.1 Background on Winner Determination Formulations

The standard integer programming formulation of winner determination involves variables xj(S)
indicating whether bidder j is allocated bundle S:

w(v) = max


∑
j∈N

∑
S∈Bj

vj(S)xj(S) :

∑
j∈N

∑
S∈Bj ,S∋i

xj(S) ≤ 1 ∀i ∈M

∑
S∈Bj

xj(S) ≤ 1 ∀j ∈ N

xj(S) ∈ {0, 1} ∀j ∈ N,S ∈ Bj


.

The first set of constraints ensures that no item is over-allocated and the second set of constraints
ensures that each bidder has at most one winning bid. This formulation is the de facto method for
computing efficient allocations in practice, and is the formulation we use when solving winner
determination problems in experiments.

120

Winner determination can also be formulated as the following linear program (LP) due
to Bikhchandani and Ostroy [2002] (see also de Vries et al. [2007]). The linear program ex-
plicitly enumerates all possible feasible allocations of the items and has the property that its
optimal solution is integral. It involves variables xj(S) indicating whether bundle S is allocated
to bidder j and variables δ(S) indicating whether feasible allocation S ∈ Γ is chosen:

max



∑
j∈N

∑
S∈Bj

vj(S)xj(S) :

xj(S) ≤
∑

S∈Γ:Sj=S

δ(S) ∀j ∈ N,S ∈ Bj pj(S)∑
S∈Bj

xj(S) ≤ 1 ∀j ∈ N πj∑
S∈Γ

δ(S) ≤ 1 πs

xj(S) ≥ 0 ∀j ∈ N,S ∈ Bj

δ(S) ≥ 0 ∀S ∈ Γ


.

The first set of constraints ensures that winning bids are consistent with the bundles in the effi-
cient allocation, the second set of constraints ensures that each bidder has at most one winning
bid, and the third constraint ensures that only one efficient allocation is chosen. The correspond-
ing dual variables are boxed following the respective primal constraint. The dual LP is given by
(with the corresponding primal variables boxed)

min


∑
j∈N

πj + πs :

πj ≥ vj(S)− pj(S) ∀j ∈ N,S ∈ Bj xj(S)

πs ≥
∑
j∈N

pj(Sj) ∀S ∈ Γ δ(S)


and has a constraint for every possible feasible allocation S ∈ Γ. By strong duality, its opti-
mal objective value is also w(v). The dual variables pj(S) have the natural interpretation of
non-additive non-anonymous bundle prices that support the efficient allocation computed by the
primal, with πj representing bidder j’s utility and πs the seller’s revenue [Bikhchandani and
Ostroy, 2002, de Vries et al., 2007], though in general these do not coincide with VCG prices
(Bikhchandani et al. [2001] provide an in depth exploration of the connections between LP du-
ality and VCG prices).

6.4.2 Formulations and Constraint Generation for WT Computation

Let B̃i denote the set of bundles Si such that vi(Si) is constrained by Θi(v−i) (so if Θi(v−i) is
explicitly represented as a list of constraints on vi, B̃i is the set of bundles Si such that vi(Si)
appears in one of those constraints).

We consider two mathematical programming formulations of weakest-competitor VCG price
computation, which is the min-max optimization problem

min
ṽi∈Θi(v−i)

max
S∈Γ(B̃i,,B−i)

ṽi(Si) +
∑
j∈N\i

vj(Sj).

121

The first is due to Balcan et al. [2023] and the second is based on the dual of the winner deter-
mination LP (6.4.1) of Bikhchandani and Ostroy [2002]. Both formulations enumerate the set of
feasible allocations Γ in their constraint set so they are too large to be written down explicitly.
Instead, we develop constraint generation routines that dynamically add constraints as needed.

Formulation based on Balcan-Prasad-Sandholm LP

The mathematical program for computing the pivot term in bidder i’s weakest-competitor VCG
price pWTi due to Balcan et al. [2023] is:

min

γ :
ṽi(Si) +

∑
j ̸=i

vj(Sj) ≤ γ ∀S ∈ Γ(B̃i,B−i),

ṽi ∈ Θi(v−i)

 . (BPS)

It turns the min-max problem into a pure minimization problem by enumerating the inner maxi-
mization terms and adding an auxiliary scalar variable γ to upper bound those terms. In constraint
generation, we initialize the BPS program with some restricted set of constraints corresponding
to feasible allocations Γ0 ⊆ Γ(B̃i,B−i) and solve to get a candidate solution γ̂, v̂i. Next, we find
the most violated constraint not currently in Γ0 by computing w(v̂i,v−i) and comparing to γ̂. If
γ̂ − w(v̂i,v−i) < 0 we have found a (most) violated constraint, and we add the constraint cor-
responding to the violating allocation (Ŝ1, . . . , Ŝn) that solves w(v̂,v−i) to the restricted pricing
LP (that is, Γ0 ← Γ0∪{Ŝ}). The BPS program with the additional constraint is resolved and the
process iterates. Otherwise if γ̂−w(v̂i,v−i) ≥ 0, all constraints of the unrestricted BPS program
are satisfied and so γ̂, v̂i is an optimal solution to the BPS program and constraint generation
terminates.

Formulation based on Bikhchandani-Ostroy LP

The mathematical program for computing the pivot term in bidder i’s weakest-competitor VCG
price pWTi based on the dual LP of the Bikhchandani and Ostroy [2002] formulation (6.4.1) is:

min


∑
j∈N

πj + πs :

πi ≥ ṽi(S)− pi(S) ∀S ∈ B̃i

πj ≥ vj(S)− pj(S) ∀j ∈ N \ i, S ∈ Bj

πs ≥
∑
j∈N

pj(Sj) ∀S ∈ Γ(B̃i,B−i)

ṽi ∈ Θi(v−i)


. (BO)

It has |B̃i| +
∑

j ̸=i |Bj| + n + 1 variables while the BPS formulation has |B̃i| + 1 variables. In
constraint generation, we solve a restricted BO program over an initial set of feasible allocations
Γ0 (replacing the third set of constraints) and get a candidate solution v̂i, (π̂j), π̂s, (p̂j(S)). To
find the most violated constraint we solve winner determination where bidders’ bids are given
by the values of the supporting prices p̂j(S) and compare the value to the seller’s revenue π̂s.
If π̂s − w(p̂) < 0 the constraint corresponding to the feasible allocation Ŝ that solves w(p̂)
is (most) violated. So, we add that constraint to the restricted BO program and iterate. Else if

122

π̂s−w(p̂) ≥ 0 all BO constraints are satisfied, and our candidate solution is optimal so constraint
generation terminates.

Remark An advantage of the BPS formulation is that it can generally be applied to any multi-
dimensional mechanism design problem, and the constraint generation works as long as one can
formulate and solve the separation problem (winner determination) in a tractable way. The BO
formulation is specific to combinatorial auctions.

So far we have given an abstract presentation of the BPS and BO mathematical programs
that make no reference to the structure of type spaces. The constraint generation routines we
described work generally as long as one can solve the associated optimization problems, but
the best approach to WT computation might differ based on the type space representation. For
example, if Θi(v−i) is a finite list of types, one would simply solve the winner determination
problem for each type in the list and choose the smallest value. In our experiments type spaces are
polyhedra described by linear constraints, so the BPS and BO formulations are linear programs
for which constraint generation as we have described is a de facto approach. Extending these
techniques to other forms of type spaces (convex sets, unions of polyhedra—in order to represent
disjunctive statements, etc.) is a compelling direction for future work.

6.4.3 Comparison of the BPS and BO Formulations
We implemented constraint generation on both the BPS and BO formulations where the type
spaces Θi(v−i) were generated independently at random for each bidder. Each type space
Θi(v−i) was determined by 8 randomly generated linear constraints (so both the BPS and BO
formulations were linear programs) that were consistent with bidder i’s actual bids (we defer
the specific details of how we generated CA instances and respective bidder type spaces to Sec-
tion 6.5). For both formulations, we initialized the starting set of allocations Γ0 with only the
efficient allocation S∗.

Run-times and total number of constraint generation iterations to compute pWT are reported
in Table 6.1.

BPS BO

Goods/Bids
Run-time

(GM)
Run-time

(GSD)
CG iters

(GM)
CG iters
(GSD)

Run-time
(GM)

Run-time
(GSD)

CG iters
(GM)

CG iters
(GSD)

64/250 4.0 2.3 25.6 2.4 7.3 2.3 58.2 2.5
64/500 9.4 2.9 45.8 3.1 20.8 2.8 102.5 2.6

128/250 8.5 3.2 42.2 2.5 17.6 2.9 110.3 2.4
128/500 46.9 6.3 59.8 2.9 110.6 5.8 164.2 2.4

Table 6.1: Geometric mean (GM) and standard deviation (GSD) of run-times (in seconds) and
number of constraint generation (CG) iterations for the BPS and BO formulations, varying the
number of goods and bids, averaged across 100 instances for each good/bid setting.

Constraint generation on the BPS formulation was significantly faster and required far fewer
iterations than the BO formulation. On an instance-by-instance basis, the BPS formulation was

123

faster and cheaper than the BO formulation on 100% of CA instances. In all experiments reported
in the following section (Section 6.5), we therefore only ran constraint generation on the BPS
formulation for all WT computations.

6.5 Experiments
We ran experiments to evaluate the revenue, incentive, fairness, and computational properties of
our new core-selecting CAs. We describe the main components of the experimental setup below.

New and old core-selecting CAs
For a given CA instance we compare five different core-selecting payment rules, defined in the
below bulleted list (the three new CAs we introduce in this work are bolded):

• Vanilla VCG nearest [Day and Cramton, 2012]: the point p ∈ MRC(pVCG) that minimizes
∥p− pVCG∥22.

• Vanilla zero nearest [Erdil and Klemperer, 2010]: the point p ∈ MRC(pVCG) that mini-
mizes ∥p∥22.

• WT nearest: the point p ∈ MRC(pWT) that minimizes ∥p− pWT∥22.
• Zero nearest: the point p ∈ MRC(pWT) that minimizes ∥p∥22.
• VCG nearest: the point p ∈ MRC(pWT) that minimizes ∥p− pVCG∥22.
The WT-nearest rule is the most direct generalization of the vanilla VCG-nearest rule pro-

posed by Day and Cramton [2012] and the zero-nearest rule is the most direct generalization of
the vanilla zero-nearest rule proposed by Erdil and Klemperer [2010].

Quadratic programming and core-constraint generation

Each of the five price vectors is computed via the quadratic programming and core-constraint
generation technique developed by Day and Cramton [2012], which we describe here at a high
level. Details can be found in Day and Cramton [2012]. Given an input reference point pref,
the goal is to find the point p ∈ MRC(pWT) that minimizes ∥p− pref∥22. Let QP(r) denote the
quadratic program

min
{∥∥p− pref

∥∥2
2
: p ∈ Core,p ≥ pWT, ∥p∥1 = r

}
and let LP denote the linear program

min {∥p∥1 : p ∈ Core,p ≥ pWT} .

Core constraints make both formulations too large to represent explicitly, and hence they are
solved with constraint generation. First, solve restricted LP with some initial set (possibly empty)
of core constraints; let r̂ be the optimal objective. Then, solve restricted QP(r̂) with the same
initial core constraints, and let p̂ be the optimal solution. To find the most violated core con-
straint, solve an auxiliary winner determination where all bids by winner i are reduced by their

124

opportunity cost vi(S∗
i)− p̂i. If the optimal winner determination value/efficient welfare is more

than the current QP revenue ∥p̂∥1, the core constraint corresponding to the set of winners in the
auxiliary winner determination is violated. Add that constraint to the restricted LP and QP, re-
solve LP to get an updated r̂, solve QP(r̂), and iterate. (The revenue-minimization LP is needed
to ensure that we find the closest point to pref on MRC(pWT). Without that we might find a closer
point, but it will be outside the minimum-revenue core and therefore not minimize the sum of
incentives to deviate.)

Type space generation
For each CA instance, we generated synthetic bidder type spaces Θi(v−i) determined by linear
constraints (so the formulations for WT price computation from Section 6.4 are LPs). We gener-
ated Θi(v−i) independently for each bidder by generating K random linear constraints according
to parameter β as follows. Each constraint is of the form∑

Si∈Bi

X(Si)c(Si)ṽi(Si) ≥ α ·
∑
Si∈Bi

X(Si)c(Si)vi(Si)

where ṽi(Si) are the variables representing bidder i’s bids, each X(Si) is an independent Bernoulli
0/1 random variable with success probability β, each c(Si) is drawn uniformly and independently
from a decay distribution where c(Si) is initially equal to 1 and is repeatedly incremented with
success probability 0.2 until failure, and α is drawn uniformly at random from [1/2, 1]. So, each
such constraint is guaranteed to be satisfied by the actual bids, and α determines how close to
tight the constraint is. Each of the K constraints per-bidder is generated this way independently.

6.5.1 Results
We used the Combinatorial Auction Test Suite (CATS) [Leyton-Brown et al., 2000] version 2.1
to generate CA instances. Like Day and Raghavan [2007] and Day and Cramton [2012], we gen-
erated each instance from a randomly chosen distribution from the seven available distributions
meant to model real-world CA applications. Code for our experiments was written in C++ and
we used Gurobi version 12.0.1, limited to 8 threads, to solve all linear programs, integer pro-
grams, and quadratic programs. All computations were done on a 64-core machine with 16GB
of RAM allocated for each CA instance.

Run-time cost of WT computation

Table 6.2 records the effects of varying β ∈ {0.2, 0.5, 0.8} (which controls the sparsity of type
space constraints) on the run-time and number of CG iterations to compute pWT. We fixed the
number of constraints K = 8, and for each β and each setting of goods in {64, 128} and bids
in {250, 500} generated 100 instances (for a total of 400 instances). For these instances, the
(geometric) mean run-time and worst-case run-time for pVCG were 2.7 seconds and 608.5 seconds,
respectively.

The worst run-time for WT computation was thus roughly 3.1× the worst run-time for VCG
computation. In general, increasing β, which increases the density of the type space constraints,

125

β
Run-time

(GM)
CG iters

(GM)
Run-time

(Max)
CG iters
(Max)

0.2 9.9 32.0 1515.1 424
0.5 13.2 56.4 1610.0 536
0.8 15.3 75.3 1896.0 567

Table 6.2: Run-times and constraint generation iterations for the BPS formulation as β varies,
with number of goods varying in {64, 128} and number of bids varying in {250, 500}, averaged
over 100 instances for each β and each setting of goods/bids.

increases the cost of WT computation. The additional run-time cost for finding a MRC(pWT)
via core-constraint generation was in fact less expensive than the run-time of core-constraint
generation to find vanilla MRC points. The geometric mean runtime of the vanilla VCG nearest
rule of Day and Cramton [2012] on the above instances was 1.7 seconds, with a worst case run-
time of 523.9 seconds. The geometric mean of our WT nearest rule on the same instances was
1.0 seconds, with a worst case run-time of 475.0 seconds. So, the main run-time cost of our new
core-selecting CAs is in computing pWT.

Varying the number of type space constraints K did not have a significant impact on run-time
nor number of constraint generation iterations for WT computation. Over all CA instances with
number of goods in {64, 128} number of bids in {250, 500, 1000}, and β = 0.3, the geometric
mean of run-times over all K was 19.7 seconds and the geometric mean of constraint generation
iterations was 42.7. The worst-case VCG run-time was 19545.2 seconds and the worst-case WT
run-time was 47718.0 seconds (2.44× larger than VCG run-time). The significantly larger run-
time relative to the experiment varying β was due to the inclusion of the the CATS instances with
1000 bids.

Incentive and revenue effects

We now discuss the impact of type space information on the sum of bidders’ incentives to deviate
from truthful bidding in a MRC(pWT)-selecting CA. That is, we record the quantity

∑
i∈W δpi

where p is any one of our new core-selecting CAs. By Theorem 6.3.2 this is equal to
∑

i∈W pi−
pWTi , that is, the difference in revenue between the MRC(pWT)-selecting rule and WT. We track
this quantity as the number of type space constraints K per bidder varies in {1, 2, 4, 8, 16}, and
compare it to the sum of bidders’ incentives to deviate in the vanilla unrestricted setting, which
by Day and Milgrom [2010] is equal to the difference in revenue between a MRC(pVCG)-selecting
rule and VCG. Each revenue difference recorded on the y-axis of Figure 6.2 is averaged over 100
CA instances each for goods in {64, 128} and bids in {240, 500, 1000}, for a total of 600 CA
instances and a total of 600 × 5 = 3000 type space instances/WT computations. We fixed the
constraint sparsity parameter β = 0.3. Figure 6.2 shows a clear trend that more information
about the bidders (in the form of more type space constraints) yields better core incentives—and
vastly better incentives than a vanilla MRC-selecting rule.

On the revenue front, Figure 6.3 shows the impact of more informative type spaces on the
revenues generated by our new core-selecting CAs (the experimental setup is the same as in the
previous paragraph). The MRC(pWT)-selecting rules are the clear winner, nearly closing half the

126

2 4 6 8 10 12 14 16
Number of Type Space Constraints (K)

250

300

350

400

450

500
Re

ve
nu

e
Di

ffe
re

nc
e

MRC Revenue - VCG Revenue
MRC(pWT) Revenue - WT Revenue

Figure 6.2: Incentive effects as type spaces convey more information (by varying the number
of constraints K ∈ {1, 2, 4, 8, 16}, with number of goods varying in {64, 128} and number of
bids varying in {250, 500, 1000}, averaged over 100 instances for each K and each setting of
goods/bids.

gap between MRC revenue and the efficient social welfare when type spaces are determined by
K = 16 constraints. While the MRC(pWT) revenue is not significantly larger than the MRC
revenue for K ≤ 8, WT’s revenue is much larger than VCG’s, leading to much better incen-
tives for the MRC(pWT) rule than the MRC rule in that regime despite similar revenues. So, a
MRC(pWT)-selecting rule with revenue not much larger than a vanilla MRC(pVCG)-selecting rule
can still provide significantly better incentives for bidders if ∥pWT∥1 is much larger than ∥pVCG∥1.

How often is WT in the core?

We now report on the frequency with which pWT ∈ Core. For CA instances with this property,
all MRC(pWT)-selecting rules return pWT unmodified. The following table records the frequency
as the number of type space constraints K varies (the setup is the same as those in Figures 6.2
and 6.3).

Number of type space constraints 1 2 4 8 16
Fraction of CAs where pVCG /∈ Core but pWT ∈ Core 2.00% 3.02% 3.36% 3.69% 4.18%

Table 6.3: Frequency with which WT is in the core but VCG is not, with number of goods
varying in {64, 128} and number of bids varying in {250, 500, 1000}; 100 instances for each K
and each setting of goods/bids.

As the number of type space constraints increases, the likelihood that WT is in the core in-
creases as well (which is in accordance with the trend in Figure 6.3 that more information through

127

2 4 6 8 10 12 14 16
Number of Type Space Constraints (K)

3300

3400

3500

3600

3700

3800

3900

4000
Re

ve
nu

e Efficient Welfare
VCG Revenue
MRC Revenue

MRC(pWT) Revenue
WT Revenue

Figure 6.3: Revenue effects as type spaces convey more information (by varying the number
of constraints K ∈ {1, 2, 4, 8, 16}, with number of goods varying in {64, 128} and number of
bids varying in {250, 500, 1000}, averaged over 100 instances for each K and each setting of
goods/bids.

more type space constraints implies greater WT revenue). Additionally, 1.17% of all instances
had the property that both VCG and WT were in the core, both generating nonzero revenue (this
has no dependence on the type space since if VCG is in the core and generates nonzero revenue,
so does WT). A fascinating phenomenon we observed was that 7.5% of instances had the prop-
erty that all vanilla MRC-selecting rules (like vanilla VCG-nearest of Day and Cramton [2012]
and vanilla zero-nearest of Erdil and Klemperer [2010]) generated zero revenue. In other words,
VCG generates zero revenue yet is in the core. This is an even worse situation than the zero
revenue cases described by Ausubel et al. [2017] and Ausubel and Baranov [2023] that a vanilla
core-selecting rule is unable to fix. The WT auction is therefore indispensable to generate any
revenue in these cases. 1 To our knowledge, no prior work discusses this phenomenon.

Who shoulders the core burden?

In Day and Cramton [2012], the impact of core pricing on the highest and lowest bidder is
visualized. They show that on CATS instances with few bids (100 or less), their vanilla VCG
nearest rule provides a more equitable apportionment of the core burden than the vanilla zero
nearest rule of Erdil and Klemperer [2010]. That trend is less pronounced for the numbers of bids
that we consider (250, 500, and 1000), and hence we present a slightly different visualization of

1In the context of Theorem 6.2.1, such situations arise when the core polytope is the box with diagonally opposite
points given by the origin (which is equal to VCG) and the winning bid vector. The WT point is strictly in the interior
of this box, and the infinitely many points on line segment connecting the origin to the WT point are attainable with
an IC auction.

128

0.0

0.2

0.4

0.6

0.8

1.0
(%

)

VCG nearest WT nearest Zero nearest vanilla VCG vanilla zero
 nearest nearest

Figure 6.4: Core burdens shouldered by the lower and upper halves of bidders (measured by
winning bid value). For the three MRC(pWT)-selecting rules, the left bar displays the core burden
split relative to WT, and the right bar displays the core burden split relative to VCG. For the two
vanilla MRC-selecting rules, the bar displays the core burden split relative to VCG.

the splitting of the core burden.

For each CA instance, and each core-pricing rule p, the core burden relative to WT (resp.
VCG) of bidder i is the quantity pi−pWTi∑

i∈W pi−pWTi
(resp. pi−pVCGi∑

i∈W pi−pVCGi
). We sorted the bidders in

ascending order of winning bid vi(S
∗
i), and summed up the total core burdens for the lower and

higher halves of bidders. Figure 6.4 displays the splitting of core burdens between the lower
and higher halves, averaged across all instances with K = 8. For VCG nearest, WT nearest,
and zero nearest, the left bar displays core burdens relative to WT, with the solid black bottom
representing the lower half of bidders and the gray top representing the upper half. The right bar
displays core burdens relative to VCG, with the darker gray bottom representing the lower half of
bidders and the lighter gray top representing the upper half. Only the core burden relative to VCG
is displayed for the vanilla VCG nearest [Day and Cramton, 2012] and vanilla zero nearest [Erdil
and Klemperer, 2010] since it would not make sense to compute core burdens relative to WT
for these rules. Overall, there was not a significant difference between WT-nearest, zero-nearest,
and VCG-nearest (and this was also the case in Day and Cramton [2012] in their comparison
of vanilla VCG-nearest and vanilla zero-nearest on CATS instances with more than 250 bids).
VCG-nearest placed the least core burden and zero-nearest placed the greatest core burden on
the lower half of bidders, and all three rules are similar to the vanilla MRC rules in terms of core
burdens relative to VCG. This fact provides further validation for our MRC(pWT)-selecting rules
as they do not unfairly skew the apportionment of the core burden.

129

6.5.2 Discussion of Alternate Rules
We conclude this section with a brief discussion of alternate core-selecting CAs that do not
conform to the exact template that has been prescribed here and by prior work.

The previous discussion of equitable sharing of the core burden begets the question of whether
there exist core-selecting rules that explicitly enforce how the core burden should be split. For
example, is there a MRC(pWT)-selecting CA p that enforces that each bidder pays a core burden
in exact proportion to their winning bid, that is,

pi − pWTi∑
i∈W pi − pWTi

≥ α · vi(S
∗
i)∑

i∈W vi(S∗
i)

for some α? The answer is no due to the asymmetric information that can be conveyed about
bidders by type spaces. For example, if Θ1(v−1) = {v1}, so pWTi = vi(S

∗
i), IR constraints force

pi = pWTi for any core-selecting p. So in such situations it could very well be the case that a low
bidder is forced to shoulder a large majority of the core burden. A general rule of thumb here
appears to be that the bidders with type spaces that convey the least information about them must
pay most of the core burden. A formal investigation of this idea is an interesting direction for
future research.

Schemes that do not select points on MRC(pWT) are also possible. For example, one could
minimize the maximum payment over the subset of the core that lies above pWT. This would min-
imize the worst incentive of any bidder to deviate from truthful bidding (by the same argument
as in Theorem 6.3.3) rather than the sum of bidders’ incentives to deviate, and would still yield
a core point that is incentive optimal in a Pareto sense. Parkes et al. [2001] proposed such rules
in the context of budget balance in exchanges, but those rules have received limited empirical
evaluation in the CA setting to date.

Finally, rules that minimize a weighted sum of squares (as studied by Bünz et al. [2022])
might be of particular relevance so that bidders i such that pWTi is much larger than pVCGi are made
to pay less of the price difference in moving from pWTi to MRC(pWT).

6.6 Conclusions and Future Research
We presented a new family of core-selecting CAs that take advantage of bidder information
known to the auction designer through bidders’ type spaces. Our design built upon the WT
auction, which boosts revenues beyond VCG by considering for each bidder the weakest type
consistent with the auction designer’s knowledge. We showed that sufficiently informative type
spaces can overcome the well-known impossibility of core-selecting CAs, and gave a revised and
generalized impossibility result that depends on whether or not the WT auction is in the core.
We then showed that our new family of core-selecting CAs, defined by minimizing revenue on
the section of the core above WT prices, minimizes the sum of bidders’ incentives to deviate
from truthful bidding. This result generalizes those of Day and Raghavan [2007] and Day and
Milgrom [2010] which rely on unrestricted bidder type spaces. On the computational front, we
developed new constraint generation techniques for computing WT prices. We compared two
formulations, one due to Balcan et al. [2023] and a new one based on Bikhchandani and Ostroy

130

[2002] that is a contribution of this chapter. Finally, we evaluated our new core-selecting CAs on
CATS instances, with synthetic generators for type space constraints. The revenue and incentive
benefits of our new CAs, along with their manageable computational overhead, make them a
useful addition to the auction design toolkit.

We conclude by discussing avenues for future research. Perhaps the most pressing direction
is the development of realistic type space generators by incorporating the specific details of the
application domain. Our new CAs display promise on our synthetically-generated type spaces,
but to understand their viability in real-world auctions one must develop detailed models of
auctioneer knowledge. Generalizing our techniques to type spaces that are not cleanly described
by linear constraints is a prerequisite here.

A more thorough investigation is needed for the design of MRC(pWT)-selecting rules. We
introduced three specific ones in this chapter (WT nearest, zero nearest, and VCG nearest) that
are natural generalizations of vanilla MRC-selecting rules, but as discussed in Section 6.5.2 there
might be other more economically meaningful rules. A computational study extending Bünz
et al. [2022] to MRC(pWT)-selecting rules is relevant here as well. A promising direction along
this vein is to use machine learning to design the reference point, weights, and amplifications of
the parameterized rules in Bünz et al. [2022]. Explicit equilibrium analysis in the style of Goeree
and Lien [2016] and Ausubel and Baranov [2020] is important as well.

Our formulations of WT computation were specific to the XOR bidding language. Extensions
and modifications of our techniques are needed for other domains and other bidding languages
such as those proposed for spectrum auctions [Bichler et al., 2023, Weiss et al., 2017], sourc-
ing auctions [Sandholm, 2002b, 2013], and more general domain-independent use [Sandholm,
2002a, Nisan, 2000, Boutilier and Hoos, 2001, Boutilier, 2002]. The interaction between the bid-
ding language of a CA and the language used to express type space knowledge is an unexplored
area here as well.

Finally, an important direction within the research strand of mechanism design with predic-
tions [Balcan et al., 2023, Balkanski et al., 2024a] is to relax the assumption that v ∈ Θ, that
is, that type spaces convey correct information about bidders. How can core-selecting CAs with
strong incentive properties be designed using the techniques developed in this chapter when type
spaces can have small errors? The techniques developed in [Balcan et al., 2023] in the general
setting of revenue-maximizing multidimensional mechanism design will likely be useful here,
and can also help shed light on better core selection in mechanism design settings beyond com-
binatorial auctions.

131

132

Chapter 7

Revenue-Optimal Efficient Mechanism
Design with General Type Spaces

Efficient mechanism design—moving up in generality from the design of efficient CAs that
was the topic of the previous chapter—is the science of implementing outcomes that maximize
economic value among strategic self-interested agents. It is the cornerstone of prominent real-
world market design applications including combinatorial auctions and Internet display adver-
tisement auctions [Edelman et al., 2007, Varian, 2007]. Additional modern applications include
proposed redesigns of financial exchanges [Budish et al., 2023], better incentive-aware recom-
mender ecosystems [Prasad et al., 2023, Boutilier et al., 2024], and auctions for large language
models [Dütting et al., 2024, Hajiaghayi et al., 2024].

Our focus in the present chapter is the design of revenue-maximizing pricing rules for efficient
(general multidimensional) mechanism design. As in the previous chapters, our approach is to
leverage information about the agents available to the mechanism designer through the agents’
type spaces, which encode constraints on agents’ private values (or types) that are known to
the mechanism designer to hold before the private types are elicited. When type spaces are
connected, Krishna and Perry [1998] and Balcan et al. [2023] show that the weakest-type (WT)
mechanism is revenue optimal subject to efficiency, incentive compatibility (agents are best off
reporting their true values to the mechanism designer), and individual rationality (no agent is
charged more than their reported value for the chosen outcome).

However, connected type spaces are unable to express many natural constraints about agent
types. For example, an auction designer might know that a bidder will bid for development rights
in exactly one of two geographic regions, but not know which one. This kind of exclusivity con-
straint/disjunction can only be represented by a disconnected type space. Similarly, the auction
designer might know that a bidder, if she submits a bid for a particular item, will bid at least $5
million for that item. The type space here is also inherently disconnected since it allows for either
no ($0) bid or a bid exceeding $5 million, but nothing in between. Another cause of disconnect-
edness is discrete type expression. For example, the FCC has experimented with “click-box”
bidding to prevent collusive bidding via bid signaling. Here, bids are placed by clicking on the
desired spectrum licenses; the bid value is given by fixed increments which precludes the ability
to bid any dollar amount [Cramton and Schwartz, 2000, Bajari and Yeo, 2009].

In this work we show that the WT mechanism generates suboptimal revenue when type spaces

133

are disconnected, and derive the revenue-optimal efficient mechanism for general disconnected
type spaces.

Our Contributions

We derive the revenue-optimal efficient mechanism for general agent type spaces. Prior work
on efficient multidimensional mechanism design [Krishna and Perry, 1998, Balcan et al., 2023,
2025c] and efficient trade [Myerson and Satterthwaite, 1983, Cramton et al., 1987] has only
considered connected type spaces. In Section 7.1 we set up the general backdrop of multidimen-
sional mechanism design, review the current state of knowledge on revenue-optimal efficient
mechanism design for connected type spaces, and present examples of natural constraints on
agent types that are disconnected and therefore outside the scope of prior work. In Section 7.2
we present a simple example showing that the vanilla WT mechanism is suboptimal for dis-
connected type spaces. In Section 7.3.1 we derive the optimal efficient mechanism in terms of
allocation-wise Groves mechanisms, a generalization of the classic Groves [1973] mechanism
with a pricing scheme that depends more intimately on the efficient allocation. In Section 7.3.2
we provide an alternate characterization of the optimal efficient mechanism based on the decom-
position of the type space into connected components, and component-wise Groves mechanisms.
In Section 7.3.3 we illustrate our approach with a simple example.

Key to both our characterizations (in terms of allocations and connected components) is an
underlying network flow structure to the optimal efficient mechanism that we establish. Either
one of these characterizations could be more useful than the other depending on how the mech-
anism designer’s knowledge about the agents’ possible types is represented or learned.

Related Work

There is a small body of work on mechanism design with type spaces that do not conform to the
usual assumptions—typically convexity, such as in the seminal work of Myerson [1981]—made
in economics. Skreta [2006] derives the optimal mechanism for a single-parameter setting where
agents’ type spaces can be arbitrary measurable subsets of the real line. Monteiro [2009] studies
incentive compatibility for general multidimensional type spaces. Lovejoy [2006] analyzes vari-
ous characterizations of optimal mechanisms when agents have finite type spaces, and Mu’alem
and Schapira [2008] provide characterizations of incentive compatibility in this setting. The
mechanisms in these aforementioned works are not efficient.

Additionally, the design of pricing rules for efficient mechanism design has largely been left
unexplored by the machine learning for mechanism design literature that we have surveyed in
detail in previous chapters. The new characterization results we present here should serve as a
timely launchpad for a new research strand along this vein.

134

7.1 Problem Formulation, Mechanism Design Background, and
Examples of Disconnected Type Spaces

As introduced in previous chapters, we are in a multidimensional mechanism design setting
with an abstract (finite) set Γ of outcomes or allocations. There are n agents, indexed by
i = 1, . . . , n, who have private values for each outcome; vi : Γ → R. The joint type space
of the agents is denoted by Θ ⊆ ×n

i=1RΓ. Given revealed types v−i of agents excluding i,
Agent i’s induced type space is Θi(v−i) = {vi : (vi,v−i) ∈ Θ}. Let Θ−i = {v−i : ∃vi ∈
RΓ s.t. (vi,v−i) ∈ Θ}. We are interested in mechanisms that implement the efficient alloca-
tion αeff(v) = argmaxα∈Γ

∑n
j=1 vj(α) (we assume a fixed tie-breaking rule so that the argmin

is unique) via a pricing rule p = (p1, . . . , pn) that is incentive compatible (vi(αeff(vi,v−i)) −
pi(vi,v−i) ≥ vi(α

eff(v′i,v−i)) − pi(v
′
i,v−i) for all (vi,v−i), (v

′
i,v−i) ∈ Θ) and individually

rational (vi(αeff(vi,v−i))− pi(vi,v−i) ≥ 0 for all (vi,v−i) ∈ Θ).
We next recall the definition of a Groves mechanism. Our main mechanisms in this chapter

are even more general than Groves mechanisms.

Groves Mechanisms and Weakest Types A Groves mechanism is defined by functions (hi)
n
i=1

where hi : ×j ̸=iRΓ → R does not depend on Agent i’s revealed type vi. It implements the effi-
cient allocation αeff(v) via payments pi(v) = hi(v−i)−

∑
j ̸=i vj(α

eff(v)). All Groves mecha-
nisms are efficient and IC. We recall that VCG and WT are given by the pricing rules pVCGi (v) =
w(0,v−i)−

∑
j ̸=i vj(α

eff(v)) and pWTi (v) = inf ṽi∈Θi(v−i) w(ṽi,v−i)−
∑

j ̸=i vj(α
eff(v)), respec-

tively (we use the infimum here rather than the minimum as in previous chapters since we will
make no assumptions about the existence of a minimizer). VCG and WT are both efficient, IC,
and IR.

Our objective is to design efficient mechanisms with better pricing rules that yield better
revenues. As detailed in the subsequent section, when type spaces are connected—a stringent
assumption on the structure of agent types (but nonetheless the predominant assumption in the
mechanism design literature)—one cannot beat WT.

7.1.1 Optimal Efficient Mechanism Design with Connected Type Spaces

We review the current state of knowledge on efficient mechanism design when type spaces are
connected (which was briefly glossed over in Chapter 5). The first two results are about the
uniqueness of Groves mechanisms as the only efficient and IC mechanisms. The third is about
the revenue optimality of the weakest type mechanism.
Theorem 7.1.1 (Revenue Equivalence [Green and Laffont, 1977, Holmström, 1979]). Suppose
Θi(v−i) is connected for every v−i. Let p be an IC pricing rule and let p′ be any other pricing
rule. Then, p′ is IC if and only if there exist functions hi : Θ−i → R such that p′i(v) =
pi(v) + hi(v−i) for all v. 1

Nisan [2007] calls this result “uniqueness of prices” and provides a self-contained proof.

1This result holds more generally for any (not-necessarily-efficient) allocation function f : Θ→ Γ.

135

Theorem 7.1.2 (Uniqueness of Groves Mechanisms [Green and Laffont, 1977, Holmström,
1979]). Suppose Θi(v−i) is connected for every v−i and let p be a pricing rule. Then, p is IC if
and only if there exist functions hi : Θ−i → R such that pi(v) = hi(v−i) −

∑
j ̸=i vj(α

eff(v)).
In other words, the only efficient and IC mechanisms on connected type spaces are Groves mech-
anisms.

Remark. Theorems 7.1.1 and 7.1.2 are actually generalizations of the versions derived by Holm-
ström [1979] and presented in Nisan [2007] (the proofs are identical so we omit them). Those
versions do not allow Agent i’s type space to vary based on the revealed types v−i of the other
agents; there is just a fixed type space Θi for each agent, and Θi needs to be connected. In con-
trast, we require that Θi(v−i) is connected for each v−i. We present here a concrete example
for which Theorems 7.1.1 and 7.1.2 apply but the original versions from Holmström [1979] do
not. Consider an auction of a single item where the auctioneer does not know the quality of the
item but knows that all bids will be clustered around either a high value or a low value—say
Θ = {v ∈ Rn : vi ∈ [H − ε,H + ε] ∀ i} ∪ {v ∈ Rn : vi ∈ [L − ε, L + ε] ∀ i}. While Θ
is disconnected, Θi(v−i) is connected for every v−i ∈ Θ−i since revealed types v−i determine
whether vi is a low bid or a high bid.
Theorem 7.1.3 (Optimality of Weakest Type [Krishna and Perry, 1998, Balcan et al., 2023]).
Suppose Θi(v−i) is connected for every v−i. Let p be any IC and IR pricing rule. Then pi(v) ≤
pWTi (v) for all i and all v ∈ Θ.

7.1.2 Examples of Disconnected Type Spaces
Here we present three examples of natural constraints on agent types for which Θi(v−i) is a
disconnected set, illustrating the need for a more general theory than the current one.

• Exclusivity constraints. Constraints of the form “Bidder i will place a bid for development
rights exceeding $10 million in either San Francisco or New York City, but not both” corre-
spond to disconnected type spaces of the form Θi = {vi : vi(SF) ≥ 10 million, vi(NYC) =
0} ∪ {vi : vi(SF) = 0, vi(NYC) ≥ 10 million}.

• Conditionals. Constraints of the form “if Bidder i bids on the bundle of items {A,B},
she will bid at least $5 million” correspond to disconnected type spaces that looks like
Θi = {vi : vi({A,B}) = 0 OR vi({A,B}) ≥ 5 million}.

The above two kinds of constraints are natural in multi-item auctions since the auction de-
signer likely does not know the specific items/packages a bidder will bid on, but has more refined
knowledge about the value of any (hypothetical) bid.

• Discrete types. Type spaces of the form Θi = {vi : vi(α) ≡ 0 (mod 1000), vi(A) ≥ 5000}
convey that values for allocation α are expressed in increments of $1000, starting at $5000.2

Discretized type expression might be a natural part of an auction interface. For example, the
FCC experimented with “click-box bidding” to prevent collusion wherein bidders can signal to
other bidders via the numerical value of their bids [Cramton and Schwartz, 2000, Bajari and Yeo,
2009].

2Technically, this example is a restriction on the reporting space of the agents. In this section we will treat the
reporting space and the type space identically, but treating them separately is an important nuance and a good future
research direction.

136

7.2 Example Illustrating Sub-optimality of Vanilla Weakest
Type

Consider the following example of a two-item auction where a bidder has a disconnected type
space: there are two items A,B for sale, three bidders submit XOR bids v1(A) = 5, v2(B) = 3,
and v3(A) = 1 (under the XOR bidding language [Sandholm, 2002a] each bidder can only win a
package they explicitly bid for, which effectively means bidders value packages they did not bid
for at zero). The type space for Bidder 1 is

Θ1 = {(v1(A), 0, 0) : v1(A) ≥ 4} ∪ {(0, v1(B), 0) : v1(B) ≥ 4}

which says that Bidder 1 wants either A or B, but not both, and will place a bid of at least $4 on
her desired item (the third coordinate represents v1(AB), which is zero). This is an example of
an exclusivity constraint discussed previously. Θ1 ⊆ R2 (ignoring the third coordinate which is
always zero) is a disjoint union of two rays with one on the v1(A) axis and one on the v1(B) axis.
All other bidders’ type spaces are unrestricted. Bidders 1 and 2 win items A and B, respectively,
in the efficient allocation. VCG charges Bidder 1 pVCG1 = 4 − 3 = 1. WT charges Bidder 1
pWT1 = min{7, 5} − 3 = 2. A better IC and IR payment scheme for Bidder 1 that is still efficient
is: “if Bidder 1 wins either item she bid on, she pays $4”. That payment scheme extracts a
payment of $4 from Bidder 1, showing that WT is suboptimal here.

7.3 Characterization of the Optimal Efficient Mechanism
We now derive the optimal efficient mechanism. We provide two equivalent characterizations.
The first (Section 7.3.1) is via a decomposition of the type space based on allocations. The
second (Section 7.3.2) is based on the decomposition of the type space into connected compo-
nents. Key to both our characterizations is an underlying network flow structure. Either one of
these characterizations could be more useful than the other depending on how the mechanism
designer’s knowledge about the agents’ possible types is represented or learned. Section 7.3.3
contains an illustrative example.

7.3.1 Allocational Characterization of the Optimal Efficient Mechanism
Let Θα

i (v−i) = {vi ∈ Θi(v−i) : α
eff(vi,v−i) = α} be the set of types vi for Agent i lead-

ing to efficient allocation α. These sets form a partition of Agent i’s type space: Θi(v−i) =⋃
α∈ΓΘ

α
i (v−i).

Allocation-wise Groves Mechanisms We define a large class of pricing rules, not all of which
are IC, that contains all IC pricing rules. These generalize the vanilla Groves mechanisms. An
allocation-wise Groves mechanism is defined by functions hα

i : Θ−i → R for every allocation
α ∈ Γ and every agent i. It charges Agent i

pi(v) = h
αeff(v)
i (v−i)−

∑
j ̸=i

vj(α
eff(v)).

137

So, while the term hi in a vanilla Groves mechanism cannot have any dependence on Agent
i’s revealed type, the corresponding term in an allocation-wise Groves mechanism can depend
on the efficient allocation induced by Agent i’s revealed type. Not all allocation-wise Groves
mechanisms are IC, but, as the following lemma shows, it is a rich enough class to cover all IC
mechanisms.
Lemma 7.3.1. If p is IC, it is an allocation-wise Groves mechanism.

Proof. For each α, partition Θα
i (v−i) as a disjoint union of its connected components: Θα

i (v−i) =⋃
C∈Cα C (C need not be finite). When restricted to any connected component C ∈ Cα, p is a

vanilla Groves mechanism (due to Theorem 7.1.2). That is, there exists hC
i such that for all

vi ∈ C, pi(vi,v−i) = hC
i (v−i)−

∑
j ̸=i vj(α). It is a standard fact that a pricing rule is IC if and

only if it prescribes identical payments for any two types leading to the same allocation. That
is, pi(vi,v−i) = pi(v

′
i,v−i) for any vi, v

′
i ∈ Θα

i (v−i) (e.g., Proposition 1.27 of Nisan [2007]).
Hence the functions hC

i for each C ∈ Cα are all identical; let hα
i be this function. Then p is the

allocation-wise Groves mechanism given by the hα
i .

We now characterize all IC and IR pricing rules that implement the efficient allocation.
Theorem 7.3.2. A pricing rule p is IC and IR if and only if it is an allocation-wise Groves
mechanism given, for each i, by (hα

i)α∈Γ that satisfies

hα
i (v−i) ≤ inf

ṽi∈Θα
i (v−i)

w(ṽi,v−i) ∀ α ∈ Γ

hα
i (v−i)− hβ

i (v−i) ≤ inf
ṽi∈Θα

i (v−i)
w(ṽi,v−i)−

[
ṽi(β) +

∑
j ̸=i

vj(β)

]
∀ α, β ∈ Γ.

(Constr.-Γ)

Proof. An allocation-wise Groves mechanism (hα
i)α∈Γ is IR if and only if

vi(α
eff(vi,v−i))−

[
h
αeff(vi,v−i)
i (v−i)−

∑
j ̸=i

vj(α
eff(vi,v−i))

]
≥ 0 ∀ (vi,v−i) ∈ Θ

⇐⇒ h
αeff(vi,v−i)
i (v−i) ≤ w(vi,v−i) ∀ (vi,v−i) ∈ Θ

⇐⇒ hα
i (v−i) ≤ w(vi,v−i) ∀ α ∈ Γ,v−i ∈ Θ−i, vi ∈ Θα

i (v−i)

⇐⇒ hα
i (v−i) ≤ inf

ṽi∈Θα
i (v−i)

w(ṽi,v−i) ∀ α ∈ Γ,v−i ∈ Θ−i.

It is IC if and only if for all v−i ∈ Θ−i and all vi, v′i ∈ Θi(v−i), an agent of true type vi has
no incentive to misreport v′i to the mechanism. Any allocation-wise Groves mechanism already
satisfies these constraints for vi, v′i ∈ Θα

i (v−i), for every α ∈ Γ, since when restricted to any Θα
i

it is equivalent to the vanilla Groves mechanism given by hα
i . So, for each v−i ∈ Θ−i, it suffices

to enforce IC constraints over all vi ∈ Θα
i (v−i) and all v′i ∈ Θβ

i (v−i), over every pair of differing
allocations α, β ∈ Γ. An allocation-wise Groves mechanism (hα

i)α∈Γ is therefore IC if and only
if (for all v−i ∈ Θ−i)

vi(α)−

[
hα
i (v−i)−

∑
j ̸=i

vj(α)

]
≥ vi(β)−

[
hβ
i (v−i)−

∑
j ̸=i

vj(β)

]
∀ α, β ∈ Γ, vi ∈ Θα

i (v−i)

138

⇐⇒ hα
i (v−i)− hβ

i (v−i) ≤ w(vi,v−i)−

[
vi(β) +

∑
j ̸=i

vj(β)

]
∀ α, β ∈ Γ, vi ∈ Θα

i (v−i)

⇐⇒ hα
i (v−i)− hβ

i (v−i) ≤ inf
ṽi∈Θα

i (v−i)
w(ṽi,v−i)−

[
ṽi(β) +

∑
j ̸=i

vj(β)

]
∀ α, β ∈ Γ.

The theorem statement now follows from Lemma 7.3.1.

Theorem 7.3.2 seems to leave open the possibility that there is actually a Parento frontier of
undominated revenue-maximial allocation-wise Groves mechanisms. However, that is not the
case. It turns out that the revenue-optimal allocation-wise Groves mechanism is unique, which
we prove next.
Theorem 7.3.3. The unique revenue-optimal mechanism subject to efficiency, IC, and IR is the
allocation-wise Groves mechanism given by (hα

i)α∈Γ that maximizes
∑

α∈Γ h
α
i subject to con-

straints (Constr.-Γ), for each i.
We will prove Theorem 7.3.3 by interpreting the linear program

max

{∑
α∈Γ

hα
i : (Constr.-Γ)

}
(LP-Γ)

from the perspective of network flow theory.
First, observe that the LP-Γ is always feasible. Indeed, vanilla WT is always a feasible

solution: let hα
i = inf ṽi∈Θi(v−i) w(ṽi,v−i) for all α ∈ Γ. Constraints of the first form are clearly

satisfied. Constraints of the second form are also clearly satisfied since the left-hand side is zero,
and the right-hand side is always non-negative as α maximizes welfare for all ṽi ∈ Θα

i (v−i) (by
definition of Θα

i). Vanilla VCG with hα
i = w(0,v−i) for all α ∈ Γ is also a feasible solution.

Proof of Theorem 7.3.3. Consider the directed graph G = (V,E) with vertices V = {s} ∪ Γ (s
is the source node), edges E = ({s} ∪ Γ)× Γ, and edge costs

cost(s, α) = inf
ṽi∈Θα

i (v−i)
w(ṽi,v−i) ∀ α ∈ Γ

cost(β, α) = inf
ṽi∈Θα

i (v−i)
w(ṽi,v−i)−

[
ṽi(β) +

∑
j ̸=i

vj(β)

]
∀ α, β ∈ Γ.

In words, G is the complete directed graph on vertex set Γ with an additional source vertex s and
directed edges from s to each vertex of Γ. Edges of the form (s, α) have cost equal to the welfare
of the weakest type in Θα

i (v−i). Edges (β, α) have cost equal to the minimum welfare difference
between allocations α and β over all types in Θα

i (v−i).
Linear program LP-Γ precisely solves the single-source shortest paths problem on G with

source node s.3 That is, the optimal solution (hα
i)α∈Γ to LP-Γ has the property that, for every

α ∈ Γ, hα
i is the cost of the shortest (minimum-cost) s → α path in G (this is a standard fact

from network flow theory; see, for example, Erickson [2017]). A minimum cost s→ α path in G
can be equivalently computed as max {hα

i : (Constr.-Γ)}, showing that LP-Γ yields the unique
optimal efficient mechanism.

3More accurately, it is the dual of the minimum-cost flow LP.

139

The network flow interpretation here is similar in spirit to those used to understand IC mech-
anisms in Vohra [2011]. Vohra’s focus is on characterizing IC mechanisms in terms of the exis-
tence of bounded shortest paths (as witnessed by the no-negative-cycle condition) on graphs that
are similar to ours. In contrast, our shortest path LPs are always feasible, and we use them to
give a new insight into generalized Groves mechanisms. To our knowledge, this is the first time
the network interpretation of incentive compatibility has been used to describe revenue-optimal
efficient mechanisms.

7.3.2 Connected-Component Characterization of the Optimal Efficient
Mechanism

In this section we give an equivalent characterization of the revenue-optimal efficient, IC, and
IR mechanism based on decompositions of the type space into its connected components. The
characterization does not make explicit reference to the underlying space of allocations Γ.

Given v−i, decompose Θi(v−i) into a disjoint union of its connected components C(v−i),
that is, Θi(v−i) =

⋃
C∈C(v−i)

C. We assume in this section that C(v−i) is finite. Let C(vi,v−i) ∈
C(v−i) denote the connected component vi lies in.

Component-wise Groves Mechanisms A component-wise Groves mechanism is defined by
functions hC

i : Θ−i → R for every connected component C ∈ C(v−i) and for every agent i. It
charges Agent i

pi(v) = h
C(vi,v−i)
i (v−i)−

∑
j ̸=i

vj(α
eff(v)).

Lemma 7.3.4. If p is IC, it is a component-wise Groves mechanism.

Proof. Let p be IC. When restricted to a connected component C ∈ C(v−i), p is a Groves
mechanism due to Theorem 7.1.2. That is, there exists hC

i such that for all vi ∈ C, pi(vi,v−i) =
hC
i (v−i)−

∑
j ̸=i vj(α

eff(v)). So p is a component-wise Groves mechanism given by (hC
i)C∈C(v−i).

Theorem 7.3.5. A pricing rule p is IC and IR if and only if it is a component-wise Groves
mechanism given, for each i and each v−i, by (hC

i)C∈C(v−i) that satisfies

hC
i ≤ inf

ṽCi ∈C
w(ṽCi ,v−i) ∀ C ∈ C

hC
i − hD

i ≤ inf
ṽCi ∈C
ṽDi ∈D

w(ṽCi ,v−i)−

[
ṽCi (α

eff(ṽDi ,v−i)) +
∑
j ̸=i

vj(α
eff(ṽDi ,v−i))

]
∀ C,D ∈ C.

(Constr.-C)

Proof. Component-wise Groves mechanism (hC
i)C∈C(v−i) is IR if and only if

vi(α
eff(vi,v−i))−

[
h
C(vi,v−i)
i (v−i)−

∑
j ̸=i

vj(α
eff(vi,v−i))

]
≥ 0 ∀ (vi,v−i) ∈ Θ

140

⇐⇒ h
C(vi,v−i)
i (v−i) ≤ w(vi,v−i) ∀ (vi,v−i) ∈ Θ

⇐⇒ hC
i (v−i) ≤ w(vi,v−i) ∀ v−i ∈ Θ−i, C ∈ C(v−i), vi ∈ C

⇐⇒ hC
i (v−i) ≤ inf

ṽi∈C
w(ṽi,v−i) ∀ v−i ∈ Θ−i, C ∈ C(v−i).

It is IC if and only if for all v−i ∈ Θ−i and all vi, v′i ∈ Θi(v−i), an agent of true type vi has
no incentive to misreport v′i to the mechanism. Any component-wise Groves mechanism already
satisfies these constraints for vi, v′i ∈ C, for every v−i ∈ Θ−i and every C ∈ C(v−i), since
when restricted to any connected component C ∈ C(v−i) it is equivalent to the vanilla Groves
mechanism given by hC

i . So, for each v−i ∈ Θ−i, it suffices to enforce IC constraints over all
vi ∈ C and all v′i ∈ D, over every pair of differing connecting components C,D ∈ C(v−i).
A component-wise Groves mechanism (hC

i)C∈C(v−i) is therefore IC if and only if (for all v−i ∈
Θ−i; let C = C(v−i), hC

i = hC
i (v−i), hD

i = hD
i (v−i) for brevity)

vi(α
eff(vi,v−i))−

[
hC
i −

∑
j ̸=i

vj(α
eff(vi,v−i))

]

≥ vi(α
eff(v′i,v−i))−

[
hD
i −

∑
j ̸=i

vj(α
eff(v′i,v−i))

]
∀ C,D ∈ C, vi ∈ C, v′i ∈ D

⇐⇒ hC
i − hD

i ≤ w(vi,v−i)−

[
vi(α

eff(v′i,v−i)) +
∑
j ̸=i

vj(α
eff(v′i,v−i))

]
∀ C,D ∈ C, vi ∈ C, v′i ∈ D

⇐⇒ hC
i − hD

i ≤ inf
ṽCi ∈C
ṽDi ∈D

w(ṽCi ,v−i)−

[
ṽCi (α

eff(ṽDi ,v−i)) +
∑
j ̸=i

vj(α
eff(ṽDi ,v−i))

]

∀ C,D ∈ C.

The theorem statement now follows from Lemma 7.3.4.

Theorem 7.3.6. The unique revenue-optimal mechanism subject to efficiency, IC, and IR is
the component-wise Groves mechanism given by, for each agent i, (hC

i)C∈Cv−i
that maximizes∑

C∈C(v−i)
hC
i subject to the constraints (Constr.-C).

Proof. The proof is similar to that of Theorem 7.3.3. The LP max{
∑

C∈C(v−i)
hC
i : (Constr.-C)}

solves the single-source shortest paths problem on the directed graph G = (V,E) with vertices
V = {s} ∪ C, edges E = ({s} ∪ C)× C, and edge costs

cost(s, C) = inf
ṽCi ∈C

w(ṽCi ,v−i) ∀ C ∈ C

cost(D,C) = inf
ṽCi ∈C
ṽDi ∈D

w(ṽCi ,v−i)−

[
ṽCi (α

eff(ṽDi ,v−i)) +
∑
j ̸=i

vj(α
eff(ṽDi ,v−i))

]
∀ C,D ∈ C

in the sense that the optimal hC
i (v−i) is the cost of the shortest s→ C path in G. It follows that

maximizing
∑

C hC
i yields the unique revenue optimal efficient mechanism.

141

1 2 3 4 5 6

1

2

3

4

5

6

ΘB
1

ΘA
1∅

AB

v1(A)

v1(B) A

s

B

1

7

5

3

1 2 3 4 5 6

1

2

3

4

5

6

ΘB
1

ΘA
1

∅

AB

v1(A)

v1(B) A

s

B

1

7

5

1

Figure 7.1: Examples of a disconnected type space Θ1 = ΘA
1 ∪ΘB

1 and the corresponding graph
G encoding the optimal efficient mechanism. The solid edges in G make up the tree of shortest
paths.

Depending on the mechanism design setting, the connected component graph can be signif-
icantly smaller than the allocation graph from the previous section. For example, |Γ| is expo-
nential in combinatorial auctions so the graph from Section 7.3.1 is prohibitively large. If type
spaces are represented as a union of K connected components, the graph in the present section
has K+1 vertices and K(K+1) edges, regardless of how large |Γ|might be. The key disclaimer
here is that we have not pursued the algorithmic question of how to compute the edge weights of
these graphs—that is an important next step for future research.

7.3.3 Example

Consider the same example from Section 7.2 with v2(B) = 3 and v3(A) = 1. Figure 7.1
displays the partition of Bidder 1’s ambient type space R2 into three regions labeled ∅, A, and
B, in which she wins nothing, item A, or item B in the efficient allocation, respectively. Vanilla
WT prescribes hA

i = hB
i = min{5, 7} = 5, with a payment of 2 if vi ∈ ΘA

1 and a payment of 4
if vi ∈ ΘB. Suppose now that Bidder 1’s type space is ΘA

1 ∪ ΘB
1 as displayed in the first row of

Figure 7.1. Since ΘA
1 and ΘB

1 are each connected, the allocation-wise graph and the component-

142

wise graph are identical. We have inf ṽAi ∈ΘA w(ṽAi ,v−i) = 7 and inf ṽBi ∈ΘB w(ṽBi ,v−i) = 5,
attained by ṽAi = (4, 1) and ṽBi = (1, 4), respectively. We have cost(B,A) = 3 with ṽA1 = (4, 3)
attaining the infimum and cost(A,B) = 1 with ṽB1 = (1, 4) attaining the infimum. The revenue-
optimal mechanism thus sets hA

1 = 7 and hB
1 = 5, extracting a payment of 4 from Bidder 1

independent of which component her true type lies in. The second row of Figure 7.1 displays
a similar situation with a larger ΘA

1 . The edge costs of (s, A), (s, B), and (A,B) remain the
same, but now cost(B,A) = 1 with ṽA1 = (4, 5) attaining the infimum. The revenue-optimal
mechanism here sets hA

1 = 6 and hB
1 = 5, extracting a payment of 3 from Bidder 1 if her true

type is in ΘA
1 and 4 if it is in ΘB

1 . So, the “less precise” knowledge conveyed by the larger ΘA
1

results in lower payment extracted.

7.4 Conclusions and Future Research
We derived the revenue-optimal efficient mechanism when type spaces can be completely gen-
eral. Our result significantly expands and generalizes the prior state of the art, the weakest type
mechanism, that, while optimal for connected type spaces, is suboptimal for more general type
spaces. Connected type spaces place a severe restriction on the kinds of knowledge structures
that can be represented, and many natural informational constraints on agent types can only be
described via a disconnected type space. We gave two characterizations of the optimal efficient
mechanism, one via allocation-wise Groves mechanisms and one via component-wise Groves
mechanisms. Both characterizations utilize the underlying network flow structure induced by
incentive compatibility and individual rationality constraints.

Studying the computational aspects of our mechanisms is a pressing next research direction.
Algorithms for computing the revenue-optimal efficient mechanism are an important next step to
make our mechanisms practical. Such algorithms will be intrinsically tied to the syntax of agents’
type spaces—how they are represented and learned will dictate how the optimal mechanism
should be computed.

An important complementary research direction is to develop techniques to learn represen-
tations of agent type spaces. Due to the generality of knowledge that type spaces can represent,
we envision that modern machine learning models can be especially useful. In our setting, the
learning problem is in a sense decoupled from the actual mechanism design. For example, prior
learning-based approaches to mechanism design such as Dütting et al. [2019], Wang et al. [2024]
learned the allocation function and payment function by representing them as neural networks—
in contrast, in our setting one would use a machine learning model to learn as much information
about the agents as possible, and then use our mechanism as a post-processor. Learning supports
of (mixtures of) distributions [Scott and Nowak, 2005, Dasgupta et al., 2005] and constraint
learning [Fajemisin et al., 2024] are both relevant approaches for learning and representing type
spaces from historical agent data. Extending the methodology here to other knowledge struc-
tures that incorporate distributional information and other forms of uncertainty is an interesting
direction as well.

143

144

Chapter 8

Learning to Generate Artificial
Competition

In this chapter, we introduce a new class of auctions that augment VCG prices with auctioneer-
specified levels of competition. We show that this new auction class offers the flexibility and
expressive power to meaningfully boost revenue under three different auctioneer knowledge
models: (i) knowledge of full bidder valuation distributions, (ii) knowledge of bidder valuation
quantiles, and (iii) knowledge of historical bidder valuation data.

Our primary research question in this chapter is: how can the auction designer use additional
knowledge to boost revenue via enhanced competition while striving to run an efficient auction?
If efficiency, IC, and IR are constraints of the auction design, the previous chapters have shown
that the WT auction is revenue optimal (assuming connected type spaces, which we will do in this
chapter). So, a more competitive auction that implements the efficient allocation and attempts to
boost revenues beyond WT necessarily runs the risk of determining that a bidder should pay more
than her winning bid price. Such a bidder could respond in one of two ways to that situation. She
could decline the offer, which would force the auctioneer to keep her winning items unsold and
result in an economically inefficient allocation. But if the overcharge is not too significant, she
might accept the offer—violating her individual rationality constraint—leading to the efficient
allocation to be realized. In both cases an economically desirable aspect of the auction design is
compromised: either the auctioneer settles for a less-than-efficient allocation, or the auctioneer
accepts that a bidder was overcharged (potentially eroding bidder trust and opening the door
for further unwanted negotiation). We model this behavior, design new kinds of competitive
auctions that are sensitive to this behavior, and show how those auctions can increase revenue
without violating individual rationality nor efficiency too frequently.

Summary of Contributions and Related Work

Competitive VCG auctions We introduce a new family of auctions, f -VCG auctions, that
gives the auction designer the expressive ability to specify precisely, for each bidder, an arti-
ficial competitor to drive competitive prices. These auctions have the feature that the auction
parameters for a bidder—her competitor—can depend on the revealed bids of all other bidders.

145

Bidder behavior and individual rationality We introduce a model of bidders who are amenable
to being overcharged past their winning bid price: a(p, κ) is the probability that a bidder who
bid p for a particular bundle accepts a counteroffer for the same bundle at a price of p + κ > p.
For example, a television company that bid $10 million for broadcasting rights might be willing
to pay an extra $10000 to satisfy the competitive requirements of the auction and win the rights
instead of dropping out altogether. In light of this bidder model we pose a weaker—but arguably
more sensible from the auctioneer’s perspective—individual rationality requirement: informally,
an auction is (π, κ)-IR for a bidder if (i) the set of bidder types that the auction overcharges has
probability mass ≤ 1− π and (ii) no bidder type is ever overcharged by more than κ.

An alternate widely-studied relaxation of IR is Bayesian-IR (B-IR), which demands that a
bidder’s utility is non-negative only in expectation over the other bidders’ values. The revenue-
optimal auction subject to efficiency, IC, and B-IR is the Bayesian weakest-type VCG auction
of Krishna and Perry [1998]. We argue that our notion of (π, κ)-IR has several advantages over
B-IR as an auction-design desideratum for at least the following reasons. First, the decision
of whether or not to participate is made significantly easier for the bidders. A B-IR auction
requires a bidder to understand the value distributions of other bidders, and that understanding
should match the auctioneer’s own understanding—a strong common knowledge assumption. In
contrast, a (π, κ)-IR auction only requires bidders to reason about whether they are willing to
accept an overcharge by $κ and thus provides bidders a greater degree of transparency. Second,
a (π, κ)-IR auction is more favorable to risk-averse bidders than a B-IR auction which can lead
to high overcharges (even if with low probability). B-IR auctions can indeed result in arbitrarily
high overcharges (this is the case with the famous B-IR auction of Crémer and McLean [1988];
see Bikhchandani [2010]) while (π, κ)-IR auctions have an explicit cap κ on overcharge. Third,
B-IR auctions can overcharge bidders with much higher frequency than (π, κ)-IR auctions which
have an explicit cap 1 − π on overcharge frequency (Example 8.2.5). Fourth, (π, κ)-IR is a
flexible enough participation model to capture forms of auctioneer knowledge other than a full
value distribution. In Section 8.2 we study a knowledge model involving quantiles. Here, the
appropriate participation constraint is a “robust” (π, κ)-IR constraint. B-IR, on the other hand, is
incompatible with the quantile knowledge model.

Revenue-optimal efficient auctions When counteroffers are restricted to be close enough to
the bid price so that bidders accept the overcharge, we derive the revenue-optimal auction subject
to efficiency, IC, and (π, κ)-IR. The revenue-optimal auction belongs to our new family of f -
VCG auctions. We study two auctioneer knowledge models: full bidder value distributions and
bidder value quantiles. We define the appropriate notion of (π, κ)-IR and derive the revenue-
optimal efficient auction for both knowledge models.

Sample and computationally efficient learning The third auctioneer knowledge model we
study is sample access to historical bidder data. We derive a general learning framework to find
revenue-maximizing f -VCG auctions when bidder behavior is prescribed by their overcharge
acceptance probability. When overcharges are sufficiently small such that efficiency can be en-
sured, our learning algorithms output nearly globally revenue-optimal efficient auctions subject
to (π, κ)-IR. We then show how to learn high-revenue, probably-efficient f -VCG auctions sub-

146

ject to ex-post IR when bidders never accept overcharges (the standard bidder assumption in
auction design). In both of these important settings we show how our learning algorithms can be
efficiently implemented with a winner determination oracle.

An important and unique feature of our learning framework for competition is that the al-
gorithms are instance adaptive and parallelize across bidders. In all prior work, the auction
parameter optimization is done based on the training data before the test instance is drawn. In
our approach, the auction parameters for a particular bidder are chosen based on the test-time
revealed bids of all other bidders, and parameter optimization across bidders can be done in
parallel.

Related work In Section 8.2 bidder types can be arbitrarily correlated, and the revenue-optimal
choice of competitor for each bidder depends heavily on the revealed types of all other bidders.
The interdependent values model [Milgrom and Weber, 1982] is thematically similar in that
one bidder’s private value can be influenced by the others. In our setting bidders themselves
have no inherent uncertainty about their private values—it is the auctioneer who can refine his
knowledge about a bidder after seeing the revealed types of everybody else. In fact, efficiency
might be impossible to achieve when a bidder’s own understanding of her value is correlated to
other bidders [Dasgupta and Maskin, 2000, Jehiel et al., 2006].

Increasing competition (and thus revenue) by recruiting additional bidders has been stud-
ied starting with Bulow and Klemperer [1996]. Our approach gives the auction designer the
flexibility to express artificial competition. In high-stakes applications like sourcing or spec-
trum recruiting additional bidders might not be possible. Another class of auctions that, indi-
rectly, boost revenue while maintaining efficiency are core-selecting auctions [Day and Ragha-
van, 2007]. However, such auctions are not IC [Goeree and Lien, 2016, Othman and Sandholm,
2010, Prasad et al., 2025b]. Our auctions are IC and relax IR (Section 8.2) and sometimes ef-
ficiency (Section 8.3). Finally, Sandholm [2013] used phantom bids in sourcing/procurement
auctions to optimize the decision of what items to procure through other means—a form of
competition that is different from our approach since it directly affects the final allocation. Our
competitive auctions solely drive prices.

Finally, our learning algorithms in Section 8.3 are instance adaptive and parallelize across
bidders unlike prior approaches to data-driven auction design. We situate our work within that
literature in Section 8.3.

8.1 Problem Formulation, f -VCG Auctions, and Our Bidder
Model

f -VCG auctions

We now define our new auction family: f -VCG auctions. For a tuple of functions f = (f1, . . . , fn),
fi : ×j ̸=iR2m → R2m , the f -VCG auction (1) elicits bidders’ types v = (v1, . . . , vn), (2) selects
the efficient allocation S∗ achieving welfare w(v), and (3) offers bidder i her winning bundle
S∗
i for a price of pfi (v) = w(fi(v−i),v−i) − w(v|N \ i). In step (3) if vi(S∗

i) ≥ pfi (v), bidder

147

i is required to pay pfi (v) (this prevents equilibria other than truthful bidding where low bid-
ders overbid). Otherwise if vi(S∗

i) < pfi (v), bidder i can choose to accept the higher payment
(violating her IR constraint) or exit the auction altogether (leading to an inefficient allocation
with S∗

i unsold). All f -VCG auctions are IC since they are Groves mechanisms (that is, the
pivot term w(fi(v−i),v−i) has no dependence on bidder i’s revealed type), and have the nat-
ural interpretation of fi(v−i) outputting an artificial competitor for bidder i. The f -auctions
fi = 0, fi = argminṽi∈Θi Ev−i

[w(ṽi,v−i)], and fi(v−i) = argminṽi∈Θi(v−i)
w(ṽi,v−i) are vanilla

VCG, Bayesian WT [Krishna and Perry, 1998], and WT [Balcan et al., 2023], respectively. Let
pṽii = w(ṽi,v−i)− w(v|N \ i) be the price when the competitor ṽi is directly specified.

Overcharges, competition, bidder behavior

An f -VCG auction risks incurring an overcharge of ofi (v) := pfi (v) − vi(S
∗
i) > 0 for bidder i.

Let a(p, κ) ∈ [0, 1] be the probability that a bidder who wins bundle S∗
i with bid price p = vi(S

∗
i)

accepts a counteroffer for the same bundle at price p + κ. We say bidder i is overcharged by κ
if ofi (v) = κ > 0, regardless of whether she accepts or not. We have ofi (v) = w(f(v−i),v−i)−
w(vi,v−i), so bidder i is overcharged if and only if w(vi,v−i) < w(f(v−i),v−i), that is, she
is not competitive enough. Let payfi (v) = pfi (v)(1[o

f
i (v) ≤ 0] + a(vi(S

∗
i), o

f
i (v))1[o

f
i (v) >

0]) be bidder i’s expected payment in the f -VCG auction. Let oṽii (v) = pṽii (v) − vi(S
∗
i) =

w(ṽi,v−i) − w(vi,v−i) and payṽii (v) = pṽii (v)(1[o
ṽi
i (v) ≤ 0] + a(vi(S

∗
i), o

ṽi
i (v))1[o

ṽi
i (v) >

0]) be the overcharge and expected payment, respectively, when the competitor ṽi is directly
specified. Finally, let C(ṽi;v−i) = {vi ∈ Θi(v−i) : w(vi,v−i) ≥ w(ṽi,v−i)} be the set of types
competitive with ṽi given v−i.

8.2 Revenue-Optimal Efficient Auctions

We study two sources of additional bidder information available to the auction designer: knowl-
edge of a full value distribution and knowledge of value quantiles consistent with an unknown
value distribution. In this section we assume overcharges are small enough to always be accepted.
This allows us to guarantee efficiency of our auctions and derive revenue-optimal efficient auc-
tions subject to relaxed IR.
Definition 8.2.1. Fix v−i. We say κ is an acceptable overcharge for bidder i if a(vi(Si), κ) = 1
for all vi ∈ Θi(v−i), Si ∈ Bi, Si ̸= ∅. Let vκi , which we call the κ-competitor, denote a bidder
type such that w(vκi ,v−i) = κ+minṽi∈Θi(v−i) w(ṽi,v−i).

If an f -VCG auction only generates acceptable overcharges, payfi (v) = pfi (v) and the auc-
tion is efficient.

To situate our results, we first restate the revenue optimality result of Balcan et al. [2023]
(covered in Chapter 5) in terms of f -VCG auctions. In all results, D is a Borel probability
distribution on Θ.
Theorem 8.2.2 (Balcan et al. [2023]). Let Θ be compact and connected. Let D be any distribu-
tion on Θ. The f -VCG auction fi(v−i) = argminṽi∈Θi(v−i)

w(ṽi,v−i) maximizes Ev∼D[payi] for
each i, and is thus revenue optimal, subject to efficiency, IC, and IR.

148

8.2.1 Knowledge Model 1: Bidder Value Distributions
We formally define our IR relaxation, (π, κ)-IR, in the distributional knowledge model where the
auction designer knows the bidder valuation distribution D over Θ.
Definition 8.2.3 ((π, κ)-IR, full value distribution). An auction is (π, κ)-IR with respect to D if
for each bidder i Prv∼D[oi(v) > 0] ≤ 1− π and oi(v) ≤ κ for all v ∈ Θ.

We now characterize the revenue-optimal auction subject to efficiency, IC, and (π, κ)-IR. It
can be written as an f -VCG auction.
Theorem 8.2.4. Let Θ be a compact and connected type space. Let D be a distribution supported
on Θ and let µ be the corresponding probability measure. Let µv−i

be the conditional measure
over vi ∈ Θi(v−i). Let vπi ∈ Θi(v−i) be such that µv−i

(C(vπi ;v−i)) = π and let κ be an
acceptable overcharge. The f -VCG auction defined by

fi(v−i) =

{
vπi if w(vπi ,v−i) ≤ w(vκi ,v−i)

vκi otherwise

maximizes Ev∼D[payi] for each i, and is thus revenue optimal, subject to efficiency, IC, and
(π, κ)-IR w.r.t. D.

Proof. For π ∈ (0, 1] let

Lπ(v−i) = argmax
L⊆Θi(v−i)

{
w(ṽi,v−i) :

µv−i
(L) = π,

ṽi = argminv̂i∈Lw(v̂i,v−i)

}
,

that is, Lπ(v−i) ⊆ Θi(v−i) is the set of probability mass π with the strongest weakest type.
For a candidate weakest type v̂i, consider the set C(v̂i;v−i) = {vi ∈ Θi(v−i) : w(vi,v−i) ≥
w(v̂i,v−i)}. C(v̂i,v−i) is precisely the set of types vi in Θi(v−i) that are competitive with
v̂i, that is, types vi that are not overcharged by pv̂ii (·,v−i). There are three steps to the proof.
First, we show there exists a type ṽi such that C(ṽi;v−i) has measure π. Next, we show that
Lπ(v−i) = C(ṽi;v−i), which explicitly characterizes Lπ(v−i) in terms of competitive types (this
is an alternate characterization to the one in the theorem statement that was solely based on com-
petitive sets). Finally, an application of revenue equivalence in the style of Krishna and Perry
[1998], Balcan et al. [2023] allows us to establish payment optimality.

Let vi = argminv̂i∈Θi(v−i)
w(v̂i,v−i) and vi = argmaxv̂i∈Θi(v−i)

w(v̂i,v−i) be the weakest
and strongest competitors in Θi(v−i), respectively (both exist due to compactness of Θi(v−i)).
We have C(vi;v−i) = Θi(v−i) so µv−i

(C(vi;v−i)) = 1. We now argue that µv−i
(C(vi;v−i)) =

0. For Si ∈ Bi let S−i be the allocation restricted to N \ i that maximizes welfare subject to the
constraint that bidder i wins Si. We have

C(vi;v−i) = {vi : w(vi,v−i) = w(vi,v−i)}

=
⋃

S∗
i ∈Bi

{
vi :

vi(S
∗
i) +

∑
j ̸=i vj(S

∗
j) ≥ vi(S

′
i) +

∑
j ̸=i vj(S

′
j) ∀ S ′

i ∈ Bi \ S∗
i ,

vi(S
∗
i) +

∑
j ̸=i vj(S

∗
j) = w(vi,v−i)

}
where each set in the (finite) union is of measure zero since the second constraint demands the
zero probability event that vi(S∗

i) take on the particular fixed value of w(vi,v−i)−
∑

j ̸=i vj(S
∗
j).

149

So C(vi;v−i) is itself of measure zero. As Θi(v−i) is convex (and thus connected), conti-
nuity of µv−i

(C(·;v−i)) and the intermediate value theorem imply the existence of ṽi with
µv−i

(C(ṽi;v−i)) = π. Fix this ṽi. We claim that Lπ(v−i) = C(ṽi;v−i). For the sake of
contradiction, suppose that Lπ(v−i) = L ̸= C(ṽi;v−i), and let v′i be the weakest type of L. So
µv−i

(L) = π and w(v′i,v−i) > w(ṽi,v−i). Since the weakest type v′i of L generates strictly
more welfare than ṽi, the set of types competitive with v′i is a strict subset of the set of types
competitive with ṽi, that is, C(v′i;v−i) ⊂ C(ṽ−i;v−i), which means µv−i

(C(v′i;v−i)) < π. But
as L ⊆ C(v′i;v−i), this is a contradiction.

We now use the revenue equivalence theorem and the above characterization to prove pay-
ment optimality. The key intuition is that fi(v−i) outputs a competitor that makes either the
κ-constraint or the π-constraint of (π, κ)-IR tight. Therefore, greater payment cannot be ob-
tained without violating relaxed-IR. Formally, suppose p′i(v) is an alternate payment rule that
implements the efficient allocation, is IC, and Ev∼D[p

′
i(v)] > Ev∼D[p

f
i (v)]. By revenue equiv-

alence [Vohra, 2011, Theorem 4.3.1], there exists a function hi(v−i) such that p′i(v) = pfi (v) +
hi(v−i). So

E
v∼D

[pfi (v) + hi(v−i)] > E
v∼D

[pfi (v)],

which means there exists a particular v−i such that hi(v−i) > 0. Fix this v−i, and let ṽi = fi(v−i)
(so ṽi ∈ {vκi , vπi }). If ṽi = vκi , the weakest type vi of Θi(v−i) is overcharged by exactly κ by
pfi (vi,v−i). That weakest type is therefore overcharged by more than κ by p′i, violating the κ-
constraint in (π, κ)-IR. Else if ṽi = vπi , vπi ’s utility is zero (that is, her IR constraint is tight) under
pfi (v

π
i ,v−i). Therefore, vπi is overcharged by p′i(v

π
i ,v−i), and more importantly by continuity of

pfi (·,v−i) there is a sufficiently-small open ball centered at vπi such that all types in that ball are
overcharged by p′i. Since the measure of types less competitive than vπi is exactly 1− π, a set of
types of measure > 1 − π is overcharged by p′i. So p′i violates the π-constraint of (π, κ)-IR in
this case.

We show via an example that B-IR auctions, specifically the Bayesian weakest-type auction
of Krishna and Perry [1998], can overcharge with high frequency, giving further credence to our
approach of optimal efficient auction design subject to an overcharge frequency cap.
Example 8.2.5. Consider an auction with two items A and B and two bidders i ∈ {1, 2}. The
type space is Θ = Θ1 × Θ2 with Θi = {(vi(A), vi(B)) ∈ R2

≥0 : vi(A) + vi(B) = 1} for
both bidders (so, implicitly, vi(AB) = 0 for both bidders). Suppose both bidders’ valuations
are distributed uniformly and independently over the type space. The Bayesian weakest types
prescribed by Krishna and Perry [1998] are chosen before true values are revealed. The Bayesian
weakest type for bidder 1 (and identically for bidder 2) is the valuation ṽ1 = (ṽ1(A), ṽ1(B)) that
minimizes Ev2 [w(ṽ1, v2)], which is ṽ1 = (1/2, 1/2).

Indeed, Let E denote the event that the weakest type ṽ1 wins item A, so E = {ṽ1(A) ≥
v2(A)} and Pr(E) = ṽ1(A). By definition of the type space, the weakest type wins B if and only
if event E does not occur. For a given ṽ1,

E
v2
[w(ṽ1, v2)] = E

v2
[ṽ1(A) · 1[E] + ṽ1(B) · (1− 1[E]) + v2(A) · (1− 1[E]) + v2(B) · 1[E]]

= ṽ1(A)
2 + (1− ṽ1(A))

2 + (1− ṽ1(A)) ·
ṽ1(A) + 1

2
+

ṽ1(A)
2

2

150

which is minimized at ṽ1(A) = 1/2, as claimed.
Suppose now that the realized type of bidder 2 is (v2(A), v2(B)) = (1, 0), so bidder 2 wins

item A and bidder 1 wins item B. According to the Bayesian weakest type, bidder 1 is charged
(1 + 1/2) − 1 = 1/2, so whenever v1(B) < 1/2, bidder 1 is overcharged. So, there is a 50%
probability that bidder 1 is overcharged.

Looking to Theorem 8.2.4, the auction designer chooses the competitor vπi for bidder 1 after
having seen bidder 2’s revealed type of (1, 0). For an overcharge probability of 1−π, that weakest
type is vπi = (1− π, π). The Bayesian weakest type is v1/2i which induces an impractically high
overcharge rate of 50%.

8.2.2 Knowledge Model 2: Bidder Value Quantiles

We now study a knowledge model where the auctioneer has less knowledge than a full bid-
der value distribution. In the quantile knowledge model, we assume some underlying unknown
value distribution, but the auction designer knows quantiles corresponding to the distribution.
Formally, for each bidder i, the auctioneer possesses a sequence of sets (that can depend on the
revealed types of the other bidders) {Θπ

i (v−i)}0<π≤1 with Θπ
i (v−i) ⊇ Θπ′

i (v−i) for any π ≥ π′

and Θ1
i (v−i) = Θi(v−i). This sequence of quantiles represents the knowledge that vi ∈ Θπ

i (v−i)
with probability π given the bid profile v−i of all other bidders. A distribution D over Θ is con-
sistent with the quantiles if Prv̂∼D[v̂i ∈ Θπ

i (v−i)|v̂−i = v−i] = π. The notion of (π, κ)-IR in the
quantile knowledge model is a robust version of the distributional version.
Definition 8.2.6 ((π, κ)-IR, quantiles). An auction is (π, κ)-IR with respect to {Θπ

i } if for each
bidder i supD̂ consistent with {Θπ

i }
Prv∼D̂[oi(v) > 0] ≤ 1− π and oi(v) ≤ κ for all v ∈ Θ.

Theorem 8.2.7. Let Θ be a compact and connected type space. Let {Θπ
i (v−i)} be a sequence

of quantiles such that (i) the set-valued function π 7→ Θπ
i (v−i) is continuous and (ii) the map

π 7→ minṽi∈Θπ
i (v−i)w(ṽi,v−i) is decreasing in π. Let D be any distribution supported on Θ

consistent with {Θπ
i (v−i)}. Let vπi = argminṽi∈Θπ

i
w(ṽi,v−i) be the weakest type in quantile

Θπ
i (v−i) and let κ be an acceptable overcharge. The f -VCG auction defined by

fi(v−i) =

{
vπi if w(vπi ,v−i) ≤ w(vκi ,v−i)

vκi otherwise

maximizes Ev∼D[payi] for each i, and is thus revenue optimal, subject to efficiency, IC, and
(π, κ)-IR w.r.t. {Θπ}.

Proof sketch. Suppose there exists a prior distribution D consistent with the quantiles and an
alternate payment rule p′i that generates strictly more payment than the f -VCG auction defined
in the theorem statement, that is, Ev∼D[p

′
i(v)] > Ev∼D[p

f
i (v)], and p′i implements the efficient

allocation and is IC. We will show that there exists a distribution D̂ consistent with the quantiles
such that under p′i, Prv∼D̂[o

′
i(v)] > 1 − π. First, by revenue equivalence [Vohra, 2011, The-

orem 4.3.1], there exists a function hi(v−i) such that p′i(v) = pfi (v) + hi(v−i). So we have
Ev∼D[p

f
i (v) + hi(v−i)] > Ev∼D[p

f
i (v)], which means there must exist a particular v−i such that

hi(v−i) > 0. Fix this v−i. We next construct the promised worst-case measure µ̂.

151

The construction of the worst-case measure µ̂ is simple: it is supported on a set of weakest
types of the form1 {

vπi : vπi = argmin
ṽi∈Θπ

i (v−i)

w(ṽi,v−i), π ∈ (0, 1]

}

and is defined to be consistent with the quantiles as µ̂({vπi : π ∈ [π1, π2]}) = π2 − π1 for all 0 <
π1 < π2 ≤ 1. The key property of this distribution is that if π1 < π2, w(vπ1

i ,v−i) > w(vπ2
i ,v−i),

that is, the weakest type in quantile π2 cannot compete with the weakest type in quantile π1, so
the µ̂-measure of types that cannot compete with vπi is precisely 1−π (this shows that µ̂ achieves
the supremum in the definition of (π, κ)-IR for any distribution D consistent with the quantiles).
Another key fact is that the map ω : (0, 1] → R≥0 defined by ω(π) = w(vπi ,v−i) is continuous
(this is a consequence of Berge’s Maximum Theorem and the fact that the set-valued function
π 7→ Θπ

i is continuous).
Now, as in the proof of Theorem 8.2.4, if µ̂(C(vκi ;v−i)) ≥ π, vκi is the optimal com-

petitor since it satisfies (π, κ)-IR and we cannot overcharge by more than κ. Otherwise if
µ̂(C(vκi ;v−i)) < π, that is, the overcharge probability is > 1−π, we must pick a weaker competi-
tor to reduce the probability of overcharge. That competitor is the vπi such that µ̂(C(vπi ;v−i)) =
π, which is precisely the weakest type vπi that minimizes w(vπi ,v−i) over vπi ∈ Θπ

i (v−i).
Finally, consider the alternate payment rule p′i, and let ṽi = fi(v−i) (so ṽi ∈ {vπi , vκi }). If

ṽi = vκi , the weakest type vi = v1i of Θi(v−i) is overcharged by exactly κ by pfi (vi,v−i). That
weakest type is therefore overcharged by more than κ by p′i, violating the κ-constraint in (π, κ)-
IR. Else if ṽi = vπi , vπi ’s IR constraint is tight when using payment rule pfi . So p′i overcharges
vπi , and more importantly, by continuity of ω, there exists ε sufficiently small such that for all
π′ ∈ (π−ε, π+ε), vπ′

i is overcharged by p′i. So the µ̂-probability mass of types being overcharged
is more than 1− π, so p′i violates the π-constraint of (π, κ)-IR.

Let us emphasize that (for both knowledge models) in a (99%, κ)-IR auction, only 1% of
bidder types ever have to deal with issues of overcharge and participation. 99% of the time the
auction is perfectly efficient, IC, IR, and enjoys improved revenues. The auctioneer sets π and
κ to strike a balance between risk of overcharging weak bidders and enjoying increased revenue
from the large majority of bidders.

We derived the globally revenue optimal efficient auction for acceptable overcharges. Ac-
ceptability ensured that a (π, κ)-IR auction remained efficient. Otherwise it is unlikely that a
concise global revenue optimality guarantee exists since, without an efficiency constraint, that
would solve revenue-optimal multi-item auction design—a major open question—as a special
case. In Section 8.3 we use a data-driven approach to design f -VCG auctions that are nearly
revenue-optimal for the class of f -VCG auctions (but not globally revenue optimal) for general
overcharges. Before that, we discuss how our results generalize beyond auctions.

1How ties are broken in the argmin is irrelevant. What is important is continuity of the induced welfare function
which is a consequence of Berge’s theorem of the maximum.

152

8.2.3 Beyond Auctions: General Mechanism Design
Our results so far are not specific to combinatorial auctions and hold in a more general mul-
tidimensional mechanism design setting as in Balcan et al. [2023]. In that setting, Γ is a fi-
nite set of outcomes and an agent’s type is a vector vi ∈ RΓ indexing her value for each out-
come. The chief issue that must be addressed when applying our methodology to other settings
is non-participation due to overcharge. What does non-participation mean, and what are its con-
sequences, in the mechanism design setting of interest? In auctions, a non-participating agent
receives no items. In other settings, for example public projects where the final outcome involves
a resource shared by agents, non-participation might not be as naturally implementable.

8.3 Learning to Generate Competition
In the previous section we studied two different knowledge models for the auction designer:
knowledge of the bidders’ value distributions and knowledge of quantiles consistent with the
bidders’ value distributions. In practice, access to an exact prior is unrealistic, and fine-grained
knowledge of quantiles as in the continuity requirement in Theorem 8.2.7 might be impractical.
In this section we study a third, realistic, knowledge model: access to historical bidder data.

First we establish the formal setting. Our setup mirrors how combinatorial auctions are run
in practice. We then prove our main learning guarantees for independently distributed bidder
values (this is the standard assumption in mechanism design; we discuss challenges to extending
our approach to correlated bidders) and provide learning algorithms. We then study the com-
putational complexity of the learning algorithms. Throughout, we situate our results within the
broader context of data-driven auction design.

Bidder valuations In practice a full valuation vector cannot be communicated due to its ex-
ponential length. Instead, the auction designer alleviates this issue by placing one of two re-
strictions on bidder valuations: (i) bidder i is restricted to submit bids on a set Bi ⊆ 2M of
predetermined bundles or (ii) bidder i is allowed to submit bids on at most b bundles of her
choice. Let supp(vi) = {S ⊆ M : vi(S) > 0} denote the supported bids of a valuation vector.
We refer to valuation functions supported on Bi as Bi-valuations and valuation functions with
support size ≤ b as b-valuations. In this section, for simplicity, we assume that bidder i submits
a Bi-valuation function where Bi is set by the auction designer (we handle b-valuations in the
full version of the paper). This is a practical requirement in combinatorial auctions to alleviate
communication costs and the computational cost of winner determination (e.g., spectrum auc-
tions in the UK and Canada employed the XOR language with explicit bid limits of 4000 and
500, respectively [Ausubel and Baranov, 2017]).

Data-driven auction design The auction designer in our setting has access to K independently
and identically distributed (IID) samples V = {v(1), . . . ,v(K)} drawn from an unknown distribu-
tion D supported on Θ. We assume bidders’ type spaces and type distributions are independent,
that is, Θ = Θ1×· · ·×Θn and D = D1×· · ·×Dn have product structures. So, Θi = Θi(v−i) is
independent of the revealed types of the other agents and the conditional distribution over bidder

153

i’s type given v−i is just Di. As discussed above, Di is a distribution over Bi-valuations, that is,
the type space of bidder i is of the form Θi ⊆ {vi ∈ [0, H]2

m
: supp(vi) = Bi} where H is an

upper bound on any bid.

Overcharge acceptance probability We assume that the probability of accepting an over-
charge only depends on the overcharge: a(κ) = a(p, κ). For example, if there are known
appraisal values on the items being auctioned, it might be reasonable to assume some bid-
independent probability of overcharge acceptance. This (stylized) assumption is solely for tech-
nical ease of exposition; without it our bounds would only change slightly to depend on the
structure of a(p, κ).

8.3.1 Learning Guarantees and Algorithms for Independent Bidder Types
Even with independent bidder types, our learning algorithms choose a competitor for bidder i
that is highly dependent on v−i. For a dataset V = {v(1), . . . ,v(K)} of type profiles, define Vi =

{v(1)i , . . . , v
(K)
i } to be the dataset of bidder-i types. Since bidders are independently distributed,

each Vi is an IID dataset from Di. Let OPTf
i (π, κ) denote the optimal payment Ev∼D[payi] of

any (π, κ)-IR f -VCG auction and let OPTi(π, κ) denote the globally optimal payment of any
efficient, IC, and (π, κ)-IR mechanism (achieved by the f -VCG auction of Theorem 8.2.4 for
acceptable κ).

We now present our main learning guarantees. Let F price(Bi) = {pṽii : Θ → [0, H] :
supp(ṽi) = Bi} and F pay(Bi) = {payṽii : Θ→ [0, H] : supp(ṽi) = Bi} be the collection of price
and payment functions, respectively, parameterized by Bi-competitor ṽi. We bound the intrinsic
complexity as measured by pseudodimension of these function families in order to prove our
learning guarantees.
Lemma 8.3.1. Pdim(F price(Bi)) and Pdim(F pay(Bi)) are at most O(|Bi| log |Bi|).

Proof. We prove the bounds for F price(Bi) and F pay(Bi) first. Fix v. For each Si ∈ Bi, let
S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) denote the allocation that maximizes welfare subject to the
constraint that bidder i wins Si. Over all Si ∈ Bi, consider the set of halfspaces in ṽi ∈ RBi:

ṽi(Si) +
∑
j ̸=i

vj(Sj) ≥ ṽi(S
′
i) +

∑
j ̸=i

vj(S
′
j) ∀ S ′

i ∈ Bi \ Si

where S ′
−i denotes the welfare maximizing allocation subject to the constraint that i wins S ′

i.
This set of ≤ |Bi|2 hyperplanes corresponding to those halfspaces partitions RBi into regions
such that within each region, the overall efficient allocation S is fixed. Thus, within each region,

pṽii (v) = ṽi(Si) +
∑
j ̸=i

vj(Sj)−
∑
j ̸=i

vj(S
∗
j)

is linear in ṽi. An application of the main result of Balcan et al. [2025d] proves the pseudodi-
mension bound for F price(Bi). To understand the structure of payṽii , consider the same set of
halfspaces as above along with the following set of Bi additional halfspaces:

ṽi(Si) +
∑
j ̸=i

vj(Sj) ≥
n∑

j=1

vj(S
∗
j) ∀ Si ∈ Bi.

154

In each region in the previous decomposition where some fixed allocation S was efficient over all
ṽi in that region, the new halfspace creates two additional regions: in one ṽi is less competitive
than vi and so oṽii (v) = 0 =⇒ payṽii (v) = pṽii (v) and in the other ṽi is more competitive
than vi so payṽii (v) = pṽii (v) · a(κ). In both cases pay is linear within each region. So in total,
O(|Bi|2) hyperplanes partition RBi into regions such that within each region, payṽii (v) is linear
as a function of ṽi. The pseudodimension bound follows from Balcan et al. [2025d].

Let ε(K, δ) = O(H
√

(|Bi| log |Bi|+ ln(1/δ))/K). The following corollary, which is a
consequence of standard results from learning theory, shows that ε controls the error between
empirical payment and expected payment uniformly over all possible competitors.

Corollary 8.3.2. Fix v. With probability≥ 1−δ over the draw of dataset V = {v(1), . . . ,v(K)},
the following quantities are at most ε(K, δ/n) for all i and all Bi-valuations ṽi.

• | 1
K

∑K
ℓ=1 p

ṽi
i (v

(ℓ)
i ,v−i)− Evi∼Di

[pṽii (vi,v−i)]|
• | 1

K

∑K
ℓ=1 pay

ṽi
i (v

(ℓ)
i ,v−i)− Evi∼Di

[payṽii (vi,v−i)]|

• | |{ℓ:o
ṽi
i (v

(ℓ)
i ,v−i)>0}|
K

− Prvi∼Di
[oṽii (vi,v−i) > 0]|

The above uniform convergence bounds are, for each bidder i, over a transformed training
set of the form (v1i ,v−i), . . . , (v

K
i ,v−i) for each bidder i. This is a form of instance-adaptive

learning since we use the test-time revealed bids v−i to (i) define the training set for bidder i
and (ii) optimize the auction parameters, namely the competitor ṽi, for bidder i (as we show
in Theorems 8.3.3 and 8.3.4). This is markedly different from prior approaches to data-driven
auction design, for example by Balcan et al. [2025d] and references within, where in order for
the learned auction to be IC, the auction parameters are set before the test instance is seen. Some
prior work tackles the unlimited supply setting by learning prices “within an instance” from
other bidders’ revealed bids [Baliga and Vohra, 2003, Balcan et al., 2005], but limited supply
(our setting) is more challenging [Balcan et al., 2021c].

We now translate these generalization guarantees into concrete learning algorithms. The most
general result for any overcharge acceptance function a(κ) is Theorem B.2 in the full version of
the paper. It outputs an empirical-payment-maximizing competitor subject to empirical over-
charge constraints. Here, we present algorithms for two pertinent cases. The first case is for
acceptable κ—here the revenue-optimal efficient (π, κ)-IR auction is given by Theorem 8.2.4.
The second case is for bidders who do not accept overcharges, that is, a(κ) = 0 for all κ. Here
we obtain high-revenue learned auctions that are exactly ex-post IR and probably efficient.

Acceptable overcharges: nearly revenue-optimal efficient auctions

The learning algorithm defining fi(v−i) outputs a competitor either from the dataset Vi or defaults
to a κ-competitor vκi based on empirical overcharge frequency.

Theorem 8.3.3. Let κ be acceptable and let the underlying type space Θ be compact and con-

155

nected. Given an IID dataset V = {v(1), . . . ,v(K)} define the following f -VCG auction:

fi(v−i) = argmax
ṽi∈Vi∪{vκi }

w(ṽi,v−i)

s.t. |{ℓ:oṽii (v
(ℓ)
i ,v−i)>0}|
K

≤ 1− π + ε(K, δ/n)

w(ṽi,v−i) ≤ w(vκi ,v−i).

The resulting auction is efficient and, with probability≥ 1−δ over the draw of V , Ev∼D[pay
f
i (v)] ≥

OPTi(π, κ)−2ε(K, δ/n) for all i and is thus nearly revenue-optimal, and is (π−2ε(K, δ/n), κ)-
IR.

High-revenue probably-efficient f -VCG auctions

We apply our techniques to the setting where bidders do not accept overcharges (a(κ) = 0 for
all κ > 0). In other words, bidders’ IR constraints must be satisfied. In this case, the only
way to increase revenue is to sacrifice efficiency. As discussed previously, this is the standard
model of bidders in auction design. We learn revenue-maximizing auctions within the class of
f -VCG auctions subject to a efficiency constraint: let OPTf

i (π) denote the optimal payment
Ev∼D[pay

f
i] = Ev∼D[p

f
i · 1[o

f
i (v) ≤ 0]] of any f -VCG auction such that Prv∼D[o

f
i (v) < 0] <

1− π (so π is the probability bidder i is sold her winning bundle in the efficient allocation). We
no longer need to consider a κ-competitor since there are no IR violations.
Theorem 8.3.4. Assume bidders do not accept overcharges. Given V = {v(1), . . . ,v(K)} an IID
dataset, define the following f -VCG auction: fi(v−i) outputs

argmax
ṽi∈Vi

1
K

∑K
ℓ=1 p

ṽi
i (v

(ℓ)
i ,v−i)1[o

ṽi
i (v

(ℓ)
i ,v−i) ≤ 0]

s.t. |{ℓ:oṽii (v
(ℓ)
i ,v−i)>0}|
K

≤ 1− π + ε(K, δ/n).

The resulting auction is IR and, with probability ≥ 1 − δ over the draw of V , for all bidders
i: Ev∼D[pay

f
i (v)] ≥ OPTf

i (π) − 2ε(K, δ/n) and i is sold her winning bundle in the efficient
allocation with probability ≥ π − 2ε(K, δ).

Setting π = 0 corresponds to “pure” revenue maximization subject to IC and IR within the
class of f -VCG auctions with no other constraints. On the other hand, π = 0.99 corresponds to
the revenue-maximizing f -VCG auction that retains each bidder with probability at least 99%.

Challenges posed by correlation in bidder types The assumption of independent bidder
types is critical to the above empirical payment maximization algorithms; each Vi is indepen-
dent and consists of IID draws of bidder i’s type and therefore we can optimize over the dataset
(v

(1)
i ,v−i), . . . , (v

(K)
i ,v−i) for each bidder without introducing any correlation. Without indepen-

dence, the dataset can be completely uninformative about bidder i’s test-time type. To illustrate,
consider the extreme scenario where the type space for bidder i implied by the test-time revealed
types of all other bidders v−i is completely disjoint from the samples, that is, Θi(v−i) ∩ Vi = ∅.
Then, Vi gives the auction designer absolutely no information about the conditional distribution
over vi given v−i. Tackling this challenge, possibly via out-of-distribution learning [Ben-David

156

et al., 2010], is a compelling direction for future work since most real-world settings involve
correlation.

8.3.2 Computational Considerations
A feature of the f -VCG auctions above is that the competitor fi(v−i) is determined via a search
over the set Vi of historical bids for i and the κ-competitor. Furthermore they are sample effi-
cient: the number of samples required to meet a prescribed error bound ε is O(H

2

ε2
(|Bi| log |Bi|+

ln(n/δ))). This is in stark contrast with other combinatorial auction formats (e.g., affine max-
imizer auctions [Roberts, 1979]) for which empirical revenue maximization requires exponen-
tially many samples and is computationally intractable [Balcan et al., 2025d] (an approach via
hyperplane arrangements has been explored in some restricted settings [Balcan et al., 2021c,
2022a]).

We determine the computational complexity of our learning algorithms given a winner-
determination oracle that on input v outputs w(v) and the efficient allocation S∗. Winner de-
termination is NP-complete but can be efficiently implemented in practice via custom search
algorithms [Sandholm et al., 2005, Sandholm, 2006] or by integer programming. First, assuming
type spaces described by linear constraints, we show how to compute a κ-competitor.
Theorem 8.3.5. Given as input v−i and a polynomial number of linear constraints defining
Θi(v−i), a κ-competitor vκi with w(vκi ,v−i) = κ + minṽi∈Θi(v−i) w(ṽi,v−i) can be computed
with a polynomial number of calls to a winner-determination oracle and additional polynomial
run time.

Proof. In Chapters 5 and 6 we gave linear programs to compute weakest types (zero-competitors
in our terminology). The LP enumerates all feasible allocations Γ in its constraint set. A sep-
aration oracle for that LP can be implemented with a single call to a winner determination or-
acle. So the weakest type ṽi that minimizes w(ṽi,v−i) can be computed via the ellipsoid algo-
rithm [Grotschel et al., 1993]. Extending to a κ-competitor is straightforward.

To find the empirical-payment-maximizing competitor fi(v−i) one needs to call the winner
determination oracle to compute w(v

(ℓ)
i ,v−i) for each v

(ℓ)
i ∈ Vi.

Theorem 8.3.6. The competitor fi(v−i) in Theorems 8.3.3 and 8.3.4 can be computed with poly-
nomial calls to a winner determination oracle and additional polynomial run time.

Finally, observe that the f -VCG auction computation can be parallelized across (indepen-
dent) bidders. The empirical-payment-maximization algorithm to compute fi(v−i) for different
bidders uses completely disjoint portions of the dataset, and is an independent computation for
each bidder. This has not been the case even in modern approaches to data-driven auction design
via, for example, deep learning [Dütting et al., 2019, Curry et al., 2023, Duan et al., 2023].

8.4 Conclusions and Future Research
We showed how to inject artificial competition into combinatorial auctions to accomplish greater
revenue when efficiency is a constraint of the auction design. While the weakest-type VCG

157

mechanism of Balcan et al. [2023] (Krishna and Perry [1998]) poses a revenue barrier for ef-
ficient, IC, and IR (B-IR) auctions, we showed that under a relaxed participation model for
bidders we can nonetheless make fruitful progress. We derived the revenue optimal auction sub-
ject to efficiency, IC, and a relaxed notion of IR that involved auctioneer-set caps on overcharge
frequency and magnitude, for different auctioneer knowledge models. Our new auction class,
f -VCG auctions, provided a unified language of artificial competition and contained the rev-
enue optimal auctions in all the above settings. Finally, we gave sample and computationally
efficient instance-adaptive learning algorithms that parallelize across bidders in a data-driven
auction design setting.

There are a number of important theoretical and practical extensions needed to develop a
more complete landscape of competitive efficient auctions. First, extensions of and more real-
istic versions of our bidder participation model are needed. While our (stylized) model takes a
first step towards understanding how a bidder would respond to competitive prices, a more nu-
anced model that ties together bidder uncertainty, rationality, and attitudes towards risk is needed.
Consolidation with the results of Chapter 7 [Prasad et al., 2025a] is also important. Finally, the
broader idea of auction parameter optimization that separates across bidders and uses the re-
vealed types of other bidders merits deeper investigation. Current combinatorial auctions do not
have this property and a more thorough understanding of when it can be exploited might lead to
new and better designs.

158

Part III

Other Models of Learning for Mechanism
Design

159

Chapter 9

Learning Revenue-Maximizing Two-Part
Tariffs

A two-part tariff (TPT) consists of an up-front lump sum fee p1 and a fee p2 for every additional
unit purchased. Various goods and services are priced using such a scheme. For example, Keurig
sells coffee machines (the up-front fee) that require proprietary coffee pods (the per unit fee).
Another example is health club memberships, where participants often are required to pay an
up-front fixed membership fee, as well as a monthly fee. More generally, a length L menu of
TPTs is a list ((p11, p

1
2), . . . , (p

L
1 , p

L
2)) of L TPTs, and a buyer may elect to pay according to

any one of the L TPTs (or not to buy anything). Menus of TPTs are also prevalent: health clubs,
amusement parks, wholesale stores like Costco, cell phone companies, and credit card companies
all frequently offer various tiers of membership usually consisting of lower future payments for
a larger up-front payment.

In an early analysis of TPTs, Oi [1971] inspires the problem via Disneyland trying to decide
between charging attendees a hefty entrance fee and allowing them free access to rides, versus
charging a nominal entrance fee but requiring payment for each ride. An even earlier discussion
of TPTs is given by Lewis [1941], where the merits and drawbacks of TPTs are discussed in
contexts such as the telephone system, gas legislation, and the UK Central Electricity Board.

We study the problem of learning high-revenue menus of TPTs from buyer valuation data.
This can be viewed as a form of automated mechanism design Conitzer and Sandholm [2002].
In our setting, the seller has access to samples from the distribution over buyers’ values, but not
an explicit description thereof. This differs from the usual approach taken by the economic the-
ory literature, and instead takes the sample-based approach to mechanism design, introduced by
Sandholm and Likhodedov [Likhodedov and Sandholm, 2004, 2005, Sandholm and Likhodedov,
2015]. Balcan et al. [2018d] study the sample complexity of revenue maximization, deriving a
broad characterization of the number of samples needed to ensure with high probability that a
mechanism that achieves high empirical revenue on the samples also generalizes well, that is,
achieves high expected revenue over a freshly drawn sample. Our main goal is to provide ef-
ficient algorithms for finding menus of TPTs that achieve high empirical revenue over a given
set of samples. Many of the mechanism settings studied by Balcan et al. have large parameter
spaces and require a number of samples that is exponential in the problem parameters to guar-
antee generalization. However, they show that the sample complexity of TPTs has only a mild

161

(at most linear) dependence on the parameters, so it is reasonable to ask for sample efficient and
computationally efficient algorithms for finding nearly optimal solutions. We present such algo-
rithms, thereby providing the missing, complementary piece to the results of Balcan et al. Our
algorithms also have the obvious practical uses in designing TPTs and menus thereof.

9.1 Problem Formulation
In our model, the seller has K units of a good to sell among n buyers j ∈ {1, . . . , n} via a menu
of TPTs. Each buyer is described by his valuation function vj : {1, . . . , K} → R over the K
units. So, vj(q) is the value that buyer j assigns to getting q units of the item. (We implicitly
assume that each buyer’s value for getting nothing is zero.) We assume that buyers act in a utility
maximizing manner: when presented with a menu ((p11, p

1
2), . . . , (p

L
1 , p

L
2)) of TPTs, buyer j with

valuation function vj : {1, . . . , K} → R will choose to buy q units priced by tariff r to maximize
vj(q)−(pr1+q ·pr2), buying 0 units if there are no values of q and r that make the above expression
non-negative. Given one sample of buyers v = (v1, . . . , vn), when faced with menu p, say buyer
j purchases quantity qj of tariff rj . Then the revenue of p with respect to v, denoted Revv(p), is∑n

j=1 1(qj ≥ 1) · (prj1 + qj · p
rj
2).

1

However, the model above allows for the possibility that the total quantity
∑n

j=1 qj is larger
than K. To deal with this issue, we will usually stipulate that the seller offers a menu p that is
feasible (that is, the total quantity purchased is at most K) for each sample he sees (and we show
that doing so ensures with high probability that the menu p is also feasible on a freshly drawn
potential future sample).

We also study the case where each buyer belongs to one of M markets, in which case a
TPT pricing scheme is of the form (p1, . . . ,pM), where buyers in market m are offered menu
pm. Revenue is defined similarly, which we denote by Revv(p1, . . . ,pM). For a set of samples
S = {v1, . . . , vN}, the empirical revenue of p with respect to S is denoted by R̂evS(p) =
1
N

∑N
i=1 Revvi(p), and similarly for the market-segmented case.

We now state the formal generalization guarantee of Balcan et al. [2018d] for the mechanism
class of length-L menus of TPTs for selling K units to n buyers partitioned into M markets.
Let D be some unknown distribution over n-tuples of buyer valuations and markets. For any
0 < ε, δ < 1, there exists an NTPT (ε, δ) ∈ N such that for all N ≥ NTPT (ε, δ), it holds with
probability at least 1 − δ over the draw of S = {v1, . . . , vN} ∼ DN that for every M -tuple
(p1, . . . ,pM) of length L menus of TPTs,

|R̂evS(p1, . . . ,pM)− E
v∼D

[Revv(p1, . . . ,pm)| ≤ ε.

The sample complexity NTPT (ε, δ) is at most Oε,δ(ML log(nKL)), where we have hidden the
dependence on ε and δ as is typical in learning theory. This follows from the piecewise structure
of the class of revenue functions: there is a partition of the TPT parameter space R2LM by
hyperplanes into not-too-numerous regions such that empirical revenue is linear over each region
(this notion is formalized in the main result of Balcan et al. [2018d]).

1We use boldface p ∈ R2L to abbreviate a menu of L TPTs. It is understood, then, that pr1 and pr2 denote p2r−1

and p2r, respectively.

162

The overarching goal of our paper is to efficiently find TPT pricing schemes that maximize
empirical revenue over a set of samples—which by the above uniform convergence result is
highly likely to be nearly optimal in terms of expected revenue as well. The number of samples
needed to guarantee generalization only depends at most linearly in the problem parameters, so
computationally efficient algorithms for empirical revenue maximization in this setting will be
sample efficient as well.

Summary of contributions
In Section 9.2 we give efficient algorithms for finding the empirical revenue maximizing menu of
TPTs when the menu length is a fixed constant. Our main result here is an O(N3K3) algorithm
when L = 1 in the single buyer setting, that generalizes to an O(n3N3K3) algorithm in the
multi-buyer setting (Section 9.2.1). We then give an (NK)O(L) algorithm for the setting where
L ≥ 1 (Section 9.2.2). This algorithm exploits the geometric structure of the problem—buyers’
valuations partition the parameter space into several convex polytopes, and revenue maximization
over each polytope reduces to solving a linear program.

In Section 9.3 we generalize the problem to multiple markets. We prove how many samples
suffice to guarantee that a two-part tariff scheme that is feasible on the samples is also feasi-
ble on a new problem instance with high probability. We then show that computing revenue-
maximizing feasible prices is hard even for buyers with additive valuations. Then, for bidders
with identical valuation distributions, we present a condition that is sufficient for the two-part
tariff scheme from the unsegmented setting to be optimal and feasible for the market-segmented
setting. Finally, we prove a generalization result that states how many samples suffice so that
we can compute the unsegmented solution on the samples and still be guaranteed that we get a
near-optimal solution for the market-segmented setting with high probability.

Additional Related Research
(Menus of) two-part tariffs have been studied in economics [Feldstein, 1972, Ng and Weisser,
1974, Leland and Meyer, 1976, Murphy, 1977, Maskin and Riley, 1984, Wilson, 1993, Arm-
strong and Vickers, 2001, Sundararajan, 2004, Shi et al., 2009]. The approach taken by much
of the economic literature on this topic is rather different from the perspective we pursue: most
work aims to find closed-form solutions for revenue maximizing two-part tariff menus, and in
attempting to do so often places various (strong) restrictions on the setting. For example, Kolay
and Shaffer [2003] derive closed forms for the profit-maximizing length-two menu of two-part
tariffs when there are exactly two types of buyers. Bagh and Bhargava [2013] derive further
closed-form results when valuations come from a finite discrete distribution. They moreover
consider three-part tariffs—which has an additional quantity allowance after which the per-unit
price takes effect. Schlereth et al. [2010] study some algorithmic aspects of finding revenue-
maximizing TPTs. They cast the revenue-maximization problem as a mixed integer linear pro-
gram and compare the performance of a few different heuristic solution algorithms. We can also
write a mixed integer linear program to solve revenue maximization in our setting, but the al-
gorithms we pose are more efficient. Other works consider two-part tariff pricing in relation to,
for example, uncertainty [Lambrecht et al., 2007, Png and Wang, 2010], opportunism [Marx and

163

Shaffer, 2004], and other practical buyer behavior [Narayanan et al., 2007, Iyengar et al., 2008].
To our knowledge, all prior work in economics considers continuous models, where quantity pur-
chased is a continuous parameter and valuations are continuous and differentiable functions of
quantity. Our setting considers a discrete and finite model, which is what gives rise to the inter-
esting algorithmic challenges we tackle. In addition, the various examples of TPT pricing in the
real world previously mentioned involve discrete quantities of goods, so our model is arguably a
more realistic description of TPT pricing. TPTs have received some recent attention in computer
science as well. Chawla and Miller [2016] study a form of TPTs (that is different from ours) in
the context of finding simple mechanisms that yield (multiplicative) approximations to optimal
revenue. However, they assume that the seller knows the distribution over buyers’ values, and
the mechanism design is tuned to that distribution. Notions of menu complexity and market seg-
mentation have also been studied by computer scientists, though in different contexts [Babaioff
et al., 2017, Hart and Nisan, 2019, Cummings et al., 2020].

The only prior work that studied the model of TPTs that we address is that of Balcan et al.
[2018d]. However, they only studied sample complexity rather than algorithms. We take this a
step further and solve the learning problem efficiently in terms of computation.

Subsequent work Since the publication of the work covered in this chapter in IJCAI 2020, the
techniques introduced here have been improved upon and extended to obtain algorithms that are
more computationally efficient and sample efficient [Balcan et al., 2024, Balcan and Beyhaghi,
2024].

9.2 Algorithms for Optimal TPT Structures

In this section we study the computation of TPT structures that maximize empirical revenue over
the given set of samples. We are given a set of samples S = {v1, . . . , vN}, where each sample
vi = (vi1(1), . . . , v

i
1(K)), . . . , (vin(1), . . . , v

i
n(K)). That is, each sample gives a value for each

buyer for each number of units bought. In the sample-based mechanism design literature, it is
standard to assume a complete valuation draw like this in each sample. We also use the shorthand
vij = (vij(1), . . . , v

i
j(K)). In the first subsection we discuss computation of a single TPT and in

the next subsection computation of a menu of multiple TPTs. In both sections we discuss the
single-buyer case for simplicity, and then in the third subsection we present the generalization to
the multi-buyer case.

9.2.1 An Efficient Algorithm for a Single TPT

In this subsection we give a polynomial-time algorithm to solve the empirical revenue maxi-
mization problem in the case where we can offer only one two-part tariff, that is, the menu
length L = 1. Because in this section we are presenting the single-buyer case for simplicity,
we do not include the buyer subscript in the valuations. So, our input is S = {v1, . . . , vN} =
{(v1(1), . . . , v1(K)), . . . , (vN(1), . . . , vN(K))}.

We observe the following, which is key for our algorithm.

164

p2 = 0

p
(1)
2

p
(2)
2

p
(3)
2

q
1 2 3 4

vi(q)

Figure 9.1: Three iterations of the single tariff algorithm from a given hinge point. The points
displayed represent the valuations of three buyers (differentiated by the rendering style of the
points) over four units. If, for example, p′2, p

′′
2 ∈ (p

(1)
2 , p

(2)
2), then the quantities purchased by

each buyer remain the same for the tariffs with slopes p′2 and p′′2 hinged at the given point.

Lemma 9.2.1. Suppose (p1, p2) is a TPT that maximizes empirical revenue over S. Then, the
line with y-intercept p1 and slope p2 passes through a point (q, vi(q)) for some i ∈ {1, . . . , N}
and q ∈ {1, . . . , K}.

Proof. Consider a TPT line with y-intercept p1 and slope p2 that does not pass through any such
point. Let d > 0 be minimal such that the TPT line with y-intercept p1 + d and slope p2 passes
through such a point. For any buyer j,

argmax
q

vj(q)− (p1 + p2q) = argmax
q

vj(q)− (p1 + d+ p2q),

so any buyer who was purchasing a nonzero quantity q when faced with (p1, p2) continues to
purchase quantity q when faced with (p1+d, p2). Any buyer who purchased nothing when faced
with (p1, p2) clearly continues to purchase nothing. Hence the TPT (p1+d, p2) generates strictly
more revenue than (p1, p2).

Now, for each point (q, vi(q)), we demonstrate that to find the revenue-maximizing tariff line
it suffices to search over a set of at most NK tariff lines passing through (q, vi(q)). Suppose we
have a tariff line passing through (q0, v

i0(q0)), at which buyer i buys quantity qi. Let us compute
the slope p2 of such a tariff line at which i prefers to buy quantity q over qi. We have

vi(q)− (vi0(q0) + p2(q − q0)) ≥ vi(qi)− (vi0(q0) + p2(qi − q0)) ⇐⇒ p2 ≥
vi(qi)− vi(q)

qi − q
.

165

Algorithm 4 Single TPT for a Single Buyer

Input: Set of samples S = {v1, . . . , vN}
Output: TPT (p1, p2) maximizing empirical revenue over S

1: Initialize MaxRev← 0.
2: for (i, q) ∈ {1, . . . , N} × {1, . . . , K} do
3: p2 ← 0
4: for j ∈ {1, . . . , N} do
5: if vj(K) ≥ vi(q) then
6: qj ← K ▷ This makes the typical

assumption that each buyer’s valuation is nondecreasing in quantity. If that is not the case,
one can in this line simply loop over quantities for each buyer separately in order to find the
utility-maximizing quantity for that buyer.

7: else
8: qj ← 0

9: repeat
10: p2 ← min

j,q′
αi,q(j, qj, q

′)

11: (j∗, q∗)← argmin
j,q′

αi,q(j, qj, q
′)

12: qj∗ ← q∗

13: p1 ← vi(q)− q · p2
14: MaxRev← max{MaxRev, R̂evS(p1, p2)}
15: until no update is found
16: return revenue maximizing (p1, p2)

For i, q, q′ let αi0,q0(i, q, q
′) = vi(q)−vi(q′)

q−q′
denote the slope where buyer i switches preferences

between quantity q and q′ (this has no dependence on i0 and q0, but for notational consistency
we leave the subscript). We must also account for the case where buyer i switches preferences
between quantity q and purchasing nothing, for which a similar calculation gives αi0,q0(i, q, 0) =
vi(q)−vi0 (q0)

q−q0
.

The algorithm works by “hinging” a TPT at every point of the form (q, vi(q)), and then
increases the slope of the tariff line at increments determined by the α values—these increments
represent thresholds at which some buyer starts buying a different quantity. As the slope of the
hinged tariff line increases, the quantity purchased by a given buyer changes at most K times, and
hence there are at most NK slope thresholds to check—between any two thresholds the average
revenue is linear in the TPT since the quantities purchased are constant, and so the maximum
revenue must be attained at one of these thresholds. See Figure 9.1 for an illustration. We write
down the precise algorithm as Algorithm 4.
Theorem 9.2.2. Algorithm 4 finds the single tariff (p1, p2) that maximizes empirical revenue over
a sample set of size N in O(N3K3) time.

Proof. That the algorithm finds the maximum revenue TPT follows from the fact that if p2 < p′2
are two consecutive slopes checked by the algorithm, the average revenue is linear as the slope

166

varies between p2 and p′2 (revenue is linear since, by construction, the quantities purchased by
each buyer are constant for slopes varying between p2 and p′2) and hence it suffices to com-
pute revenue at the endpoints. Lemma 9.2.1 shows that the empirical revenue maximizer passes
through a point (q, vi(q)), and since Algorithm 4 checks all slope thresholds for TPTs passing
through each such point, we are guaranteed to find the TPT yielding the maximum empirical
revenue.

We now count the number of steps taken by Algorithm 4. Line 2 involves NK iterations,
Line 4 involves N iterations, Line 9 involves at most NK iterations (since each buyer starts
by purchasing K units, and can change quantities at most K times as the slope p2 increases),
computing the minimization in Lines 10 and 11 requires at most NK steps, and computing
revenue in Line 14 requires N steps. So the total run time is O(NK(N + NK(NK + N))) =
O(N3K3).

We ran Gurobi (the fastest general-purpose mixed integer program solver) to find the revenue-
maximizing single TPT for a single buyer (after formulating this problem as an integer program),
and Algorithm 4 beat it dramatically. For example, averaged over 10 runs on randomly gener-
ated instances with K = 5 units and N = 600 samples, our algorithm returned the revenue-
maximizing TPT in under 23 minutes while Gurobi took over 3.5 hours.

9.2.2 An Algorithm for Multiple TPTs

In this subsection we give an algorithm for optimizing a menu of two-part tariffs. In most appli-
cations, for practical reasons, the length of the menu cannot be very long, so L is a small constant
(typically 2 or 3). We present an algorithm that is exponential in L but still polynomial in N and
K. It can be viewed as a generalization of the single tariff algorithm. The geometric structure of
the problem is the same as in Balcan et al. [2018d], but we exploit it to get algorithms while they
use it to prove sample complexity bounds.
Theorem 9.2.3. There is an algorithm that finds the empirical revenue maximizing length L
menu of tariffs over a sample set of size N in (NK)O(L) time.

Proof. For input valuations v1, . . . , vN , let Hi(q, q
′, r, r′) denote the hyperplane

vi(q)− (pr1 + q · pr2) = vi(q′)− (pr
′

1 + q′ · pr′2),

where if q (or q′) is 0, the LHS (or RHS) is replaced by 0. Consider the collection of hy-
perplanes H consisting of these (at most N(KL)2) hyperplanes for each q, q′ ∈ {0, . . . , K},
r, r′ ∈ {1, . . . , L}, i ∈ {1, . . . , N}. It is a basic combinatorial fact that H partitions R2L into at
most |H|2L ≤ N2LK4L regions (each region is a connected component of

R2L \ ∪i,q,q′,r,r′Hi(q, q
′, r, r′)

and is an intersection of at most |H| halfspaces). The average revenue over the set of samples
is linear within each such region, since the quantity purchased by each buyer remains constant
within each region, so the maximum revenue within a region C can be found by solving the

167

following linear program: if buyer i purchases quantity qi(C) ∈ {0, . . . , K} of tariff ri(C) ∈
{1, . . . , L} within C, the maximum revenue in C is

max
p∈C

1

N

N∑
i=1

1(qi(C) ≥ 1) · (pri(C)
1 + qi(C) · pri(C)

2).

Each linear program involves 2L real variables, and |H| ≤ NK2 constraints. So, it can be solved
in poly(N,K,L) time.

Moreover, there is a simple algorithm with run time poly(N2LK4L) which outputs a repre-
sentation of each region determined by H as a 0/1 vector of length |H|, where the kth entry
determines on which side of the kth hyperplane of H the region lies on. The high-level idea
is to sequentially add each hyperplane to the list of regions maintained so far (starting with the
entire Euclidean space R2L), iterating over the current regions and checking whether the added
hyperplane intersects each region—updating the list of regions if so. See Xu [2020] for a more
detailed description of enumerating the regions formed by a collection of hyperplanes (in a to-
tally different context). Our algorithm solves the aforementioned linear program for every such
region and picks the solution that yields highest empirical revenue.

In the single TPT (L = 1) case, Algorithm 4 is more efficient than the algorithm presented
in Theorem 9.2.3. This is because the former is a direct combinatorial algorithm that does not
require solving LPs.

9.2.3 Generalization to Multiple Buyers

While our algorithms in the two subsections above were presented in the single buyer setting,
they directly extend to the multi-buyer setting as follows. Algorithm 4 generalizes by feeding
in not just N valuations but all nN valuations. The only change to the algorithm itself is that
in Step 12 we check that the allocation is feasible, that is, not more than the total quantity K is
bought among the buyers in any sample i ∈ {1, . . . , N}; if more is bought, then the assignment
on that line is skipped because that pricing solution is infeasible. (Another nuance is that the
initialization in Lines 2–8 might not be feasible, but that is fine.)

Similarly, in our multi-TPT algorithm, whenever we are about to solve an LP corresponding
to some region determined by the set of hyperplanes, we first check that the region is feasible in
the sense that the total quantity bought by buyers in any one sample is at most K.

Remark. Suppose buyers have additive valuations, that is, vi(q1 + q2) = vi(q1) + vi(q2) for any
quantities q1 + q2 ≤ K. Then, the revenue maximization problems considered in this section
become trivial. In particular, the run time dependence on K and L vanishes. This can be seen
due to the fact that price(q) := minr p

r
1+q ·pr2 is a piece-wise linear increasing concave function.

An additive buyer’s valuation function is simply a line with positive slope passing through the
origin, as vi(q) = vi(1 + · · · + 1) = q · vi(1). Hence, the difference vi(q) − price(q) is always
maximized when q = K, that is, buyers are always only interested in the entire K-unit bundle.
Thus, revenue is determined by a single price, that of the entire bundle, and the seller simply can
try every possible price in {v1(K), . . . , vN(K)}, due to Lemma 9.2.1.

168

9.3 Market Segmentation
We now consider a setting in which each buyer belongs to one of M markets X1, . . . ,XM—
determined by attributes such as geographic location, income level, etc. The seller sets M length
L-menus of TPTs (p1, . . . ,pM), where buyers in market m are allowed to purchase according to
pm.

The seller wants to offer a TPT menu for each market so that the overall solution across
markets is feasible, that is, that the sum of the demands of the markets does not exceed K. We
show that any solution that is feasible for each sample in a large enough sample set is with high
probability a feasible solution for any future sample.
Proposition 9.3.1. Let N ≥ NTPT (ε, δ). With probability at least 1−δ over the draw of S ∼ DN ,
if p1, . . . ,pM is feasible for S,

Pr
v∼D

[(p1, . . . ,pM) is feasible for v] ≥ 1− ε.

Proof. Consider the class of 0/1 valued indicator functions {fv(p1, . . . ,pM)} indicating whether
(p1, . . . ,pM) is feasible for v. For a single sample i, consider the set of hyperplanes of the form

vij(q)− (pr1,m(i,j) + q · pr2,m(i,j)) = vij(q
′)− (pr

′

1,m(i,j) + q′ · pr′2,m(i,j))

for each j, q, q′, r, r′, where m(i, j) is the market to which buyer j in sample i belongs. These
hyperplanes partition the tariff space R2LM into at most (n(KL)2)2LM regions such that the
indicator is constant within each region. Thus, by Balcan et al. [2018d], for a sample set S of
size at least NTPT (ε, δ), it holds with probability at least 1− δ that for all p1, . . . ,pM ,∣∣∣f̂S(p1, . . . ,pM)− E

v∼D
[fv(p1, . . . ,pM)

∣∣∣ ≤ ε.

So, if (pS
1 , . . . ,p

S
M) is any feasible solution for S, that is, f̂S(pS

1 , . . . ,p
S
M) = 1, we have

E[fv(pS
1 , . . . ,p

S
M)] = Pr[fv(p

S
1 , . . . ,p

S
M) = 1] ≥ 1− ε,

with probability at least 1− δ over the draw of S and v.

It turns out that market segmentation introduces substantial computational hurdles to revenue
maximization. Even when bidders are additive (which removes the parameters L and K from
the problem as remarked in the previous section), the problem of setting a feasible price for
each market in an empirical revenue maximizing way is NP hard. Since additive buyers either
purchase the entire bundle of K units or nothing, each menu is reduced to a single price, so the
seller’s problem is to set prices p1, . . . , pM for each market. Any solution must be feasible for
the set of samples, which means at most one buyer can purchase the full K units in each sample.

Theorem 9.3.2. Consider a set of samples S = {v1, . . . , vN} where each buyer belongs to
one of M markets. Even if all buyers have additive valuations, there is no algorithm that finds
feasible prices p1, . . . , pM that maximize empirical revenue over S in time polynomial in M and
N , unless P = NP.

169

Proof. We reduce from Maximum Weight Independent Set. Given an instance G = (V,E) of
Maximum Weight Independent Set (without loss of generality assume G has no isolated vertices),
label the vertices V = {v1, . . . , vn}, and let wi = weight(vi). Let pi =

wi|E|
deg(vi)

. We will have n

markets X1, . . . ,Xn, corresponding to the vertices of G.
For each (vi, vj) ∈ E, we introduce a sample consisting of a buyer in market Xi with value pi

and a buyer in market Xj with value pj (ensuring that no feasible pricing solution can simultane-
ously offer pi to market Xi and pj to market Xj). So we have a total of |E| samples. Clearly, any
feasible revenue maximizing solution involves offering market Xi either price pi, or something
higher than pi (so that no buyer in market Xi across any of the samples makes a purchase).

Our construction yields a one-to-one correspondence between independent sets in G and
feasible n-tuples of prices: an independent set I ⊆ V with weight W =

∑
vi∈I wi corresponds

to a pricing solution where if vi ∈ I , market Xi is offered pi, and if vi /∈ I , market Xi is offered
something higher than pi. For a vertex vi in the independent set, there are precisely deg(vi)
samples containing a buyer in marketXi who makes a purchase at price pi, so the average revenue
obtained by the pricing solution corresponding to I is

1

|E|
∑
vi∈I

deg(vi) · pi = W,

by the choice of pi. This completes the (clearly polynomial time) reduction.

Remark. This hardness is inherent to the limited supply setting. If the seller has unlimited
supply, and K is instead the maximum quantity any buyer is willing to purchase, we can find
the empirical revenue maximizing market-segmented solution in M(nNK)O(L) time simply by
running the procedure described in the previous section restricted to each market in turn. This
finds the empirical optimum over each market, and without capacity constraints, this is a feasible
solution and thus the optimal market-segmented solution as well.

9.3.1 Buyers with Identically Distributed Valuations
To circumvent the hardness of feasible empirical revenue maximization over worst case in-
stances, we now study a setting where each buyer’s valuation vector is drawn from the same
distribution. Each market is of a certain prescribed size, and buyers are indistinguishable across
markets. An example of a natural real-world market segmentation that potentially satisfies this is
segmentation based on geographic location. For example, there may be no reason to believe that
the average buyer in San Francisco values a gym-membership plan any differently than the aver-
age buyer in Pittsburgh. We show that under certain conditions, it is optimal to treat every buyer
equally—regardless of whether they come from a large market or a small market. This imme-
diately yields a simple algorithm in which we solve the non-segmented version of the problem,
and reuse the solution for the segmented version.

Suppose there are a total of n buyers across markets, and an αm fraction of these buyers
belong to market Xm. For simplicity, we assume that the seller receives zero revenue on in-
stances on which the chosen solution is infeasible. Suppose the optimal solution (p∗

1, . . . ,p
∗
M) =

argmax(p1,...,pM) Ev[Revv(p1, . . . ,pM)] satisfies the property that in expectation, buyers from

170

market Xm contribute an αm fraction of the total revenue. That is, Ev[Revv|Xm(p
∗
m)] = αm ·

Ev[Revv(p
∗
1, . . . ,p

∗
M)] for each m. In this case, we can reuse the non-segmented solution. For a

randomly drawn v, let F denote the event that fv(p∗
1, . . . ,p

∗
M) = 1. We have that

E
v
[Revv|Xm(p

∗
m)] = E

v

[
Revv|Xm(p

∗
m) | F

]
· Pr

v
[F]

= E
v
[
∑

vm∈Xm
Revvm(p

∗
m) | F] · Prv[F]

= αmnE
v
[Revvm(p

∗
m) | F] · Pr

v
[F],

so Ev[Revvm(p
∗
m) | F] = 1

n Ev[Revv(p
∗
1, . . . ,p

∗
M) | F] for each m. Thus, we can set p∗

1 =
· · · = p∗

m, and hence we only need to search for an optimal solution in the non-segmented case
that we then offer to every market. The empirical revenue maximizing menu of TPTs p in the
non-segmented case can be computed in (nNK)O(L) time, as in the previous section. Finally, we
provide the generalization guarantee for using the unsegmented solution in the market-segmented
case.
Theorem 9.3.3. Let N ≥ NTPT (ε, δ). In the above setting, with probability at least 1 − δ over
the draw of S ∼ DN ,∣∣∣∣R̂evS(p, . . . ,p)− max

(p1,...,pM)
E
v
[Revv(p1, . . . ,pM)]

∣∣∣∣ ≤ 2ε,

where p is the empirical revenue maximizing solution when all the markets are combined.

Proof. Let p∗ denote the expected revenue maximizer in the non-segmented case, so by the
previous discussion, (p∗, . . . ,p∗) is also the expected revenue maximizer in the segmented case.
By Balcan et al. [2018d], |R̂evS(p)−Ev[Revv(p)]|, |R̂evS(p∗)−Ev[Revv(p

∗)| ≤ ε with probabil-
ity at least 1− δ over the draw of S. As R̂evS(p) ≥ R̂evS(p

∗) and Ev[Revv(p
∗)] ≥ Ev[Revv(p)],

applying the triangle inequality yields the result.

171

172

Chapter 10

Within-Instance Learning for Auction
Design

In this chapter we present some new approaches to the elusive problem of designing high-revenue
(limited supply) multi-item, multi-bidder auctions when no additional information is available.
While Chapter 9 dealt with “learning across instances”, here we assume that the mechanism
designer is faced with a single instance of bidders who show up. First, in Section 10.1, we
present a new learning within an instance mechanism that generalizes and improves upon previ-
ous random-sampling mechanisms for unlimited supply, and prove strong revenue guarantees for
this mechanism. Then, in Section 10.2, we show how to learn an auction that is robust to market
shrinkage and market uncertainty. If there is a fixed population of buyers known to the seller, but
only some random (unknown) fraction of them participate in the market, how much revenue can
the seller guarantee?

10.1 Learning Within an Instance for Designing High-Revenue
Combinatorial Auctions

The setting here is a limited-supply combinatorial auction where a seller has m indivisible items
to allocate among a set S of n bidders—this is the same setup as in Chapter 6 of this thesis.

A common strategy for designing truthful, high-revenue auctions when there is an unlimited
supply of each good has been to use a random-sampling mechanism. A random-sampling mech-
anism splits the bidders into two groups, and applies the optimal auction for each group to the
other group (thereby achieving truthfulness, since the auction run on any bidder’s group is inde-
pendent of her reported valuation). In unlimited-supply settings, random-sampling mechanisms
satisfy strong guarantees [Goldberg et al., 2001, Balcan et al., 2005, Alaei et al., 2009].

However, there has been no unified, general-purpose method of adapting the random-sampling
approach to analyze the limited-supply setting. Limited supply poses additional significant tech-
nical challenges, since allocations of items to bidders must be feasible. For example, random-
sampling with any mechanism class that allows bidders to purchase according to their demand
functions would violate supply constraints. Most adaptations of random-sampling to limited
supply deal with feasibility issues in complicated ways, for example, by constructing intricate

173

revenue benchmarks to limit the number of buyers who can make a purchase [Balcan et al.,
2007], or by placing combinatorial constraints on the environment [Devanur and Hartline, 2009,
Devanur et al., 2015].

In this section we circumvent these issues by applying auction formats that generalize the
classical VCG auction to sell all m items to a random group of participatory bidders. These
auctions prescribe feasible allocations and payments (and are incentive compatible). Several
parameterized generalizations of the VCG auction have been studied with the aim of increas-
ing revenue by introducing weights to favor certain bidders or allocations. Examples include
affine-maximizer auctions (AMAs) [Roberts, 1979], virtual-valuations combinatorial auctions
(VVCAs) [Likhodedov and Sandholm, 2004, 2005, Sandholm and Likhodedov, 2015], λ-auctions [Je-
hiel et al., 2007], mixed-bundling auctions [Jehiel et al., 2007], and mixed-bundling auctions with
reserve prices [Tang and Sandholm, 2012]. However, little is known when it comes to formal
approximation guarantees for these auction classes.

A direct adaptation of vanilla random sampling can do poorly when the auction class is rich.
Suppose we randomly partition the set of bidders into two groups S1 and S2, and apply the
optimal mechanism for S1 to S2. Consider learning a second-price auction with a reserve in the
case of selling a single item. Suppose there is one bidder who values the item at 10 and the
remaining buyers’ values are in [0, 9]. The high bidder is in S1 with probability 1/2. So with
probability 1/2, the optimal reserve price for S1 is 10, and the revenue obtained from S2 is 0.
More generally, since we study large parameterized auction classes, the optimal auction for S1

potentially overfits to a small number of bidders. Another adaption along the lines of vanilla
random sampling to prevent overfitting would be to partition the set S of bidders into N groups,
use the first N − 1 groups to learn a high-revenue auction, and then apply that auction to the N th
group. The issue with this approach is that generalization guarantees would require N large.
Thus the final mechanism only sells items to a tiny fraction of bidders, incurring a large revenue
loss.

Our main learning-within-an-instance (LWI) mechanism alleviates these issues by randomly
drawing a set of participatory bidders Spar, and then sampling several proportionally-sized learn-
ing groups from Slrn := S \ Spar to learn an auction that is close-to-optimal in expectation for
a random learning group. Our approach is a form of automated mechanism design Conitzer and
Sandholm [2002], Sandholm [2003].

Setup and the Main Mechanism
In our model, the seller has m indivisible items to allocate among a set S of n bidders/buyers.
Each buyer is described by her valuation function vi : 2

{1,...,m} → R≥0 over bundles of the m
items. (We implicitly assume that each buyer’s value for getting the empty bundle is zero.) We
do not assume that b ⊆ b′ implies v(b) ≤ v(b′) (a common assumption called free disposal).
For an allocation α, vi(α) denotes the value buyer i assigns to the bundle she receives according
to α (we assume that buyers valuations are independent of what other buyers’ receive). For
an allocation α, W (α) =

∑n
i=1 vi(α) denotes the welfare of α, and W−i(α) =

∑
j ̸=i vj(α)

denotes the welfare of α when bidder i is absent. For a set of bidders S, W (S) = maxαW (α)
denotes the welfare of an efficient allocation. (We depart slightly from the notation of Part II
for convenience.) The auctions we study in this section are parameterized generalizations of the

174

VCG auction that modify the welfare function by applying boosts to specific allocations with
the aim of increasing revenue. For an auction M and a set of bidders S ′ ⊆ S, we denote by
RevM(S ′) the sum of the payments made by bidders in S ′ when the seller runs M among bidders
in S ′. We write S ′ ∼p S to denote a subset S ′ being sampled from S by including each bidder in
S ′ independently with probability p.

We now present the main mechanism of this section.
Learning-within-an-instance mechanism (LWI) Parameters: p, q,N

1. Draw a group of participatory buyers Spar ∼p S.

2. Draw learning groups of buyers S1, . . . , SN ∼q S \ Spar.

3. Find the mechanism M̂ ∈ M that maximizes empirical revenue 1
N

∑N
t=1 RevM(St) over

the learning groups.

4. Apply mechanism M̂ to Spar.
WhenM is a class of incentive-compatible mechanisms, LWI is incentive-compatible since

M̂ does not depend on the valuations of the bidders in Spar.

Summary of Contributions

First, we provide the main guarantees satisfied by our LWI framework. The guarantees are
derived using learning-theoretic techniques. Informally, they provide (high probability) lower
bounds on the performance of LWI of the form RevM̂(Spar) ≥ W (S)(LM − εM(N, δ)) − τM,
where LM measures the revenue loss incurred by allocating items only to participatory bidders,
εM is a standard learning-theoretic error term that depends on the intrinsic complexity of M,
and τM is an additional error term we coin partition discrepancy. Partition discrepancy is also a
measure of the intrinsic complexity ofM, but is simultaneously a measure of the level of uni-
formity in the set S of bidders. We provide examples and a general bound to illustrate properties
of partition discrepancy.

We next introduce a new class of auctions called bundling-boosted auctions. These auctions
are parameterized in a way that does not depend on the number of bidders who participate in
the auction (unlike most previous generalizations of the VCG auction). We prove bounds on the
intrinsic complexity of bundling-boosted auctions (and a few other natural subclasses of auctions)
that have no dependence on the number of bidders. We show that under certain conditions LWI on
the class of bundling-boosted auctions yields an (O(p)−ε)-approximation with high probability.

We show how our learning-within-an-instance mechanism can be implemented in a sample
and computationally efficient manner for bundling-VCG auctions and sparse bundling-boosted
auctions by leveraging practically efficient routines for solving winner determination. Finally,
we show how to use structural revenue maximization to decide what auction class to use with
LWI when there is a constraint on the number of learning groups.

Additional Related Research

There have been various alternate approaches to revenue maximization for limited supply. Bal-
can et al. [2008] obtain a O(2

√
logm log logm)-approximation for bidders with subadditive valu-

175

ations, which was improved to a O(log2m)-approximation by Chakraborty et al. [2013]. Both
these works studied item-pricing mechanisms. Likhodedov and Sandholm [2005], Sandholm and
Likhodedov [2015] obtain a (2 + 2 log(h/l))-approximation when bidders have additive valua-
tions, where l and h are lower and upper bounds on the valuation of any bidder for any item.
Our results significantly improve upon these existing results in various situations. For example,
for W (S) sufficiently large, we prove that our LWI mechanism run on the class of bundling-
boosted auctions yields an (O(p) − ε)-approximation. In addition, previous approximations are
on expected revenue, while we give the much stronger guarantee of high-probability revenue ap-
proximation. Furthermore, our results do not require restrictions on valuation functions, giving
them very broad applicability.

A recent line of work studies learning revenue-maximizing auctions for limited supply across
instances [Mohri and Medina, 2014, Morgenstern and Roughgarden, 2015, Balcan et al., 2018d].
These works laid down the framework for understanding learning-theoretic quantities related to
auctions in order to prove generalization guarantees. Our paper studies the significantly tougher
and unsolved problem of learning from a single instance for limited supply. We extend the tech-
niques of Balcan et al. [2005] (that can be viewed as learning within an instance for unlimited
supply) and show that learning theory combined with the power of parameterized auctions pro-
vides a way to meaningfully learn within an instance in the more challenging setting of limited
supply.

10.1.1 Main Guarantees of our Framework

In this section we present the main guarantees satisfied by LWI in terms of structural proper-
ties of the auction class and the set of bidders. Our guarantees are in terms of partition dis-
crepancy, delineability, and the following quantity that controls the revenue loss incurred by
selling only to bidders in Spar. For S ′ ⊆ S, let OPTM(S ′) = supM∈M RevM(S ′) and let
LM(S ′) = OPTM(S ′)/W (S).

For a given participatory set of bidders Spar, partition discrepancy measures the worst-case
deviation in an auction class between the revenue on Spar versus the expected revenue on a set of
bidders sampled from S \ Spar. For 0 < q < 1 and Spar ⊂ S, partition discrepancy is defined as

τM(q, Spar) = sup
M∈M

∣∣∣RevM(Spar)− E
S0∼qS\Spar

[RevM(S0)]
∣∣∣.

Partition discrepancy is a measure of both the intrinsic complexity of the class M and the
amount of uniformity in the set S of bidders. We now present general guarantees for LWI in
terms of partition discrepancy. The guarantees follow from uniform convergence results, and
depend on the expected Rademacher complexity RM(N ;S \Spar) ofM with respect to S \Spar

and the pseudodimension Pdim(M) of M. Recall that Empirical Rademacher complexity is
defined as

RM(S1, . . . , SN) = E
σ

[
sup
M∈M

1

N

N∑
t=1

σtRevM(St)

]
,

where σ is chosen uniformly at random from {−1, 1}N . Expected Rademacher complexity is

176

defined as
RM(N ;Slrn) = E

S1,...,SN∼Slrn

[RM(S1, . . . , SN)].

Our LWI mechanism satisfies a standard uniform convergence guarantee since each learning
group St is sampled independently and identically from Slrn := S \ Spar [Anthony and Bartlett,
1999].
Theorem 10.1.1. Let Slrn denote the learning pool of bidders chosen by a run of LWI. With
probability at least 1 − δ over the draw of S1, . . . , SN ∼ Slrn, every mechanism M ∈ M
satisfies ES0∼Slrn

[RevM(S0)] ≤ 1
N

∑N
t=1 RevM(St) + 2RM(N ;Slrn) +W (S)

√
ln(1/δ)
2N

.

Rademacher complexity and pseudodimension are related via the following bound due to Dud-
ley [1987]:

RM(N ;Slrn) ≤ 60 ·W (S)

√
Pdim(M)

N
.

Delineability and pseudodimension are related via the main result of Balcan et al. [2018d]: ifM
is (d, h)-delineable, Pdim(M) ≤ 9d ln(4dh).

M̂ denotes the empirical-revenue-maximizing mechanism used by LWI.
Theorem 10.1.2. Let Spar denote the participatory set of bidders chosen by a run of LWI.
Then, with probability ≥ 1 − 2δ over the draw of S1, . . . , SN ∼q S \ Spar, (a) Rev

M̂
(Spar) ≥

W (S)
(
LM(Spar)−4RM(N ;S\Spar)−

√
2 ln(1/δ)/N

)
−2τM(q, Spar) and (b) Rev

M̂
(Spar) ≥W (S)

(
LM(Spar)−

240
√
Pdim(M)/N −

√
2 ln(1/δ)/N

)
− 2τM(q, Spar).

Proof. Let ε = εM(δ,N) = 2RM(N ;Slrn) +
√

ln(1/δ)
2N

. By uniform convergence, it holds with
probability at least 1− δ that for all M ∈M,

E
S0∼Slrn

[RevM(S0)] ≤
1

N

N∑
t=1

RevM(St) + εW (S),

and symmetrically it holds with probability at least 1− δ that for all M ∈M,

1

N

N∑
t=1

RevM(St) ≤ E
S0∼Slrn

[RevM(S0)] + εW (S).

Hence, the probability of both events is at least 1−2δ. Let M∗ = argmaxM∈M RevM(Spar). For
brevity, let τ = τM(q, Spar). Then,

RevM̂(Spar) ≥ E
S0∼Slrn

[RevM̂(S0)]− τ

≥ 1

N

N∑
t=1

RevM̂(St)− εW (S)− τ

≥ 1

N

N∑
t=1

RevM∗(St)− εW (S)− τ

177

≥ E
S0∼Slrn

[RevM∗(Spar)]− 2εW (S)− τ

≥ RevM∗(Spar)− 2εW (S)− 2τ

= W (S)(LM(p, Spar)− 2ε)− 2τ,

as desired. Part (b) is a consequence of the bound RM(N ;Slrn) ≤ 60W (S)
√

Pdim(M)
N

[Dudley,
1987].

IfM has finite pseudodimension (this is not necessarily the case if we only have a bound on
Rademacher complexity), we can give an equivalent sample-complexity version of the guarantee.
Let N(ε, δ,Pdim(M)) = 4802Pdim(M) ln

(
1
δ

)
/ε2.

Corollary 10.1.3. Let Spar denote the participatory set of bidders chosen by a run of LWI with
parameters p, q,N , where N ≥ N(ε, δ,Pdim(M)). Then, with probability ≥ 1 − 2δ over the
draw of S1, . . . , SN ∼q S \ Spar, RevM̂(Spar) ≥ W (S)(LM(Spar)− ε)− 2τM(q, Spar).

To understand the pseudodimension of various mechanism classes, Balcan et al. [2018d]
introduced the notion of delineability. A class of mechanisms M is (d, h)-delineable if (1)
every M ∈ M can be parameterized by a vector θ ∈ Rd, and (2) for every set S of bidder
valuations, there are at most h hyperplanes partitioning Rd such that RevS(θ) := Revθ(S) is
linear in θ over each connected component of Rd determined by the hyperplanes. The way we
have stated delineability requires h to be independent of the number of bidders in S. We include
an analysis of the case where h is allowed to be a function of n in the appendix. The following
example illustrates delineability in a simple case. Balcan et al. [2018d] provide more examples
and a more detailed discussion.
Example 10.1.4 (Second-price auctions with a reserve price). The class of second-price auctions
with reserve prices for selling a single item is (1, 2)-delineable. Indeed, if v1 and v2 are highest
and second-highest values for the item, respectively, then for r < v2 the revenue of a second-price
auction with reserve r is v2, for v2 ≤ r ≤ v1 it is r, and for r > v1 it is 0.

Rademacher complexity, pseudodimension, and delineability are connected through the fol-
lowing relations: RM(N ;Slrn) ≤ 60W (S)

√
Pdim(M)/N [Dudley, 1987] and ifM is (d, h)-

delineable, Pdim(M) ≤ 9d ln(4dh) [Balcan et al., 2018d].
We present our main guarantee in terms of delineability:

Theorem 10.1.5. Suppose M is (d, h)-delineable. Let Spar denote the participatory set of
bidders chosen by a run of LWI with parameters p, q,N , where N ≥ N(ε, δ, 9d ln(4dh)).
Then, with probability ≥ 1 − 2δ over the draw of S1, . . . , SN ∼q S \ Spar, RevM̂(Spar) ≥
W (S)(LM(Spar)− ε)− 2τM(q, Spar).

We provide analogous guarantees for mechanism classes that satisfy a version of delineability
that is dependent on the number of bidders in the appendix.

10.1.2 Partition Discrepancy
In this section we develop a further understanding of partition discrepancy. We first provide two
examples illustrating structural properties of partition discrepancy. We then provide a general-
purpose high-probability bound on partition discrepancy based on pseudodimension of the mech-
anism class.

178

The first example relates the failure of vanilla random sampling to large partition discrepancy
using the scenario given in the introduction. We show how LWI alleviates that issue.
Example 10.1.6 (LWI versus random sampling). Consider the example from the introduction
where a single item is for sale andM is the class of second-price auctions with reserve. There
is one bidder with value 10, and all remaining bidders’ values are in [0, 9]. Suppose LWI is run
with parameters p = 1/2, q = 1 (which corresponds to vanilla random sampling). Then, for any
participatory set Spar, τM(1, Spar) = 10 = W (S), achieved by setting a reserve price of 10. If
instead LWI was run with parameters p = q < 1, the high bidder is in S \ Spar with probability
1− p, and in this case τM(q, Spar) = 10q If, for example, p = q = 1/20, this is a small additive
loss in the overall revenue guarantee.

The next example involves replica economies, where the set of bidders is composed of several
copies of a ground set of bidders. Replica economies have been studied extensively in economics
(and recently from an algorithmic viewpoint) in the context of convergence to equilibria [Debreu
and Scarf, 1963, Aumann, 1964, Barman and Echenique, 2020].
Example 10.1.7 (Replica economies). Suppose S0 = {v1, v2, v3}, and S consists of n0 replicas
of S0. Let M be any auction class that can be parameterized in a way that does not depend
on the number of bidders (for example, any of the auctions we define in Section 3). Any M ∈
M can be identified by the overall allocation it uses, and the at most m allocations it uses to
determine payments. Hence, M can be encoded as a vector of length at most (m + 1)2 (there
are at most m + 1 allocations, and each sells to at most m buyers). Over all M ∈ M, the
number of such vectors is at most 3(m+1)2 , since bidders of the same type are indistinguishable.
Suppose LWI is run with p = 1/2, q = 1. Due to Chernoff bounds, for n0 large, it holds with
exceedingly high probability that the number of bidders of each type (v1, v2, or v3) in Spar is in
[n0/2 − 10

√
n0, n0/2 + 10

√
n0] (and likewise for S \ Spar). So if n0 is sufficiently large, both

Spar and S \Spar contain enough bidders of each type to form each of the at most 3(m+1)2 auction
vectors with extremely high probability, in which case RevM(Spar) = RevM(S \ Spar) for every
M ∈M and so τM(1, Spar) = 0.

We now present a general bound on partition discrepancy in terms of the learning-theoretic
complexity ofM when LWI is run with parameters p = 1/3 and q = 1/2. For each bidder i,
let ṽi = max|S′|≥n/3−5

√
n supM∈M |RevM(S ′ ∪ {i})− RevM(S ′)| and let ṽ = (ṽ1, . . . , ṽn) ∈ Rn.

These terms measure how sensitive the mechanism class is to the addition of a single bidder to
an already large set of bidders. In the following results on partition discrepancy, we condition on
the (probability ≥ 1− e−25) event that |Spar| ≥ n/3− 5

√
n.

Theorem 10.1.8. With probability ≥ 1 − δ over the draw of Spar ∼1/3 S, τM(1/2, Spar) ≤

||ṽ||2
√

2nPdim(M) ln 4e2Pdim(M)W (S)
δ

.

Proof. Let S = {v1, . . . , vn} and let Yi = 1 with probability 1/3 and Yi = 0 with probability 2/3.
Fix a single mechanism M ∈M. Let g(Y1, . . . , Yn) = RevM(Spar)−ES0∼Slrn

[RevM(S0)] where
Spar = {vi : Yi = 1}. Let ci be an upper bound for |g(Y1, . . . , Yn)− g(Y1, . . . , Y

′
i , . . . , Yn)|. We

have
∑

i c
2
i ≤ ||ṽ||22. By symmetry and the fact that each bidder has an equal probability of 1/3

of being in Spar or in S0, ESpar∼S,S0∼Slrn
[RevM(Spar)−RevM(S0)] = 0. McDiarmid’s inequality

179

therefore yields

Pr
Spar∼S

(τM(1/2, Spar) ≥ t) = Pr
Spar∼S

(∣∣∣∣RevM(Spar)− E
S0∼Slrn

[RevM(S0)]

∣∣∣∣ ≥ t

)
≤ e−2t2/

∑
c2i .

Fix t. Let M̃ ⊆M be a subset of mechanisms that forms a t/2n+2 L1-cover of {(RevM(S ′))S′⊆S :

M ∈ M} ⊂ R2n . Now, for each M ∈ M, there is M̃ ∈ M̃ such that for any Spar, with
n1 = |Spar|, n2 = |Slrn|, we have

τM(1/2, Spar) =

∣∣∣∣RevM(Spar)−
1

2n2

∑
S0⊆Slrn

RevM(S0)

∣∣∣∣
≤ |RevM(Spar)− RevM̃(Spar)|+

1

2n2

∑
S0⊆Slrn

|RevM(S0)− RevM̃(S0)|

+

∣∣∣∣RevM̃(Spar)−
1

2n2

∑
S0⊆Slrn

RevM̃(S0)

∣∣∣∣
≤ t

4
+

t

2n2+2
+ τM̃(1/2, Spar)

≤ t

2
+ τM̃(1/2, Spar).

A union bound yields

Pr

(
sup
M∈M

τM(1/2, Spar) ≥ t

)
≤ Pr

(
max
M̃∈M̃

τM̃(1/2, Spar) ≥ t/2

)
≤ N1(t/2

n+2;M; 2n) · e
− t2

2
∑

c2
i

≤ e(Pdim(M) + 1)

(
2n+3eW (S)

t

)Pdim(M)

· e
− t2

2
∑

c2
i .

The final inequality follows from a well-known L1-covering-number bound in terms of pseu-
dodimension [Haussler, 1995, Anthony and Bartlett, 1999]. Taking t sufficiently large yields the
desired confidence of at least 1− δ.

Combined with Corollary 10.1.3, we have:
Theorem 10.1.9. Run LWI with parameters N , p = 1/3, q = 1/2, where N ≥ N(ε, δ,Pdim(M)).
Then, with probability ≥ 1− 3δ,

RevM̂(Spar) ≥ W (S)(LM(Spar)− ε)− 2||ṽ||2

√
2nPdim(M) ln

4e2Pdim(M)W (S)

δ
.

When W (S) is sufficiently large, we can condense the bound on partition discrepancy to
contribute at most an ε loss.
Corollary 10.1.10. Run LWI with parameters N , p = 1/3, q = 1/2, where N ≥ N(ε, δ,Pdim(M)).
If W (S)2 − 8n||ṽ||22Pdim(M)

ε2
ln(W (S)) ≥ 8n||ṽ||22Pdim(M)

ε2
ln
(4e2Pdim(M)

δ

)
,

RevM̂(Spar) ≥ W (S)(LM(Spar)− 2ε)

with probability ≥ 1− 3δ.

180

Remark. We emphasize that small partition discrepancy (for example, stipulating that τM is a
fixed constant) should be viewed as a uniformity condition on the set of bidders. Theorem 10.1.8
provides just one way of understanding partition discrepancy by relating it to learning-theoretic
quantities.

10.1.3 Population-Size-Independent Auctions
In this section we instantiate our main guarantee for specific mechanism classes M to obtain
more concrete revenue approximations. The following is a naı̈ve lower bound on LM(Spar) for
auction classes that can run a second-price auction on the grand bundle {1, . . . ,m}with a reserve
price.
Proposition 10.1.11. Let v1 ≥ · · · ≥ vn denote the valuations of each bidder in S on the grand
bundle. For any 0 < α ≤ 1 such that αn is an integer, any mechanism classM containing the
second-price auction on the grand bundle with reserve price r for every r satisfies LM(Spar) ≥
vαn

W (S)
with probability ≥ 1− e−αnp over the draw of Spar ∼p S.

Proof. Consider running a second-price auction on the grand bundle with reserve price vαn. If
any bidder who values the grand bundle at least vαn is in Spar, the revenue obtained is at least
vαn. This event occurs with probability Pr(∪i≤αn{i ∈ Spar}) ≥ 1− (1− p)αn ≥ 1− e−αnp.

However, any bidder’s value for the grand bundle can be an arbitrarily bad approximation to
W (S). In the remainder of the paper we introduce some new auction classes and prove more
fine-tuned approximations for those classes.

We now study a handful of population-size-independent auction classes, that is, auction
classes that can be parameterized in a way that does not depend on the number of bidders. Tra-
ditional variants to the VCG auction including λ-auctions and AMAs specify boosts based on
particular allocations and are thus not independent of the population size (and in particular can-
not be used with LWI in a natural way since S1, . . . , SN , Spar can all vary in size). In contrast to
these, our auctions specify boosts based on bundles and bundlings.

A bundling is a partition of items {1, . . . ,m} into bundles. We say that an allocation respects
a bundling if no two items in the same bundle are allocated to different buyers. For an allocation
β, let blg(β) denote the finest bundling respected by β, that is, the bundling with the fewest
number of bundles that β respects. For example, if β allocates items 1 and 3 to bidder 1, and the
remaining items to bidder 2, blg(β) = {{1, 3}, {2, 4, . . . ,m}}. Let Φ denote the collection of all
bundlings. |Φ| < (0.792m/ ln(m+ 1))m [Berend and Tassa, 2010]. We now introduce two new
auction classes that can be viewed as population-size-independent analogues of λ-auctions and
VVCAs, respectively.

The class of bundling-boosted auctions is the class auctions parameterized by real |Φ|-dimensional
vectors ω ∈ R|Φ| that specify additive boosts ω(ϕ) for each bundling ϕ ∈ Φ. The overall allo-
cation α∗ used by a bundling-boosted auction ω is chosen to maximize W (α) + ω(blg(α)), and
bidder i pays maxα(W−i(α) + ω(blg(α))) − (W−i(α

∗) − ω(blg(α∗))). Equivalently, ω is the
λ-auction with λ(α) = ω(blg(α)).

The class of bundle-boosted auctions is the class of auctions parameterized by real 2m-
dimensional vectors ω ∈ R2m that specify additive boosts ω(b) for each bundle b ⊆ {1, . . . ,m}.

181

The overall allocation α∗ is chosen to maximize W (α) +
∑

b∈blg(α) ω(b), and bidder i pays
maxα(W−i(α) +

∑
b∈blg(α) ω(b)) − (W−i(α

∗) +
∑

b∈blg(α∗) ω(b)). Equivalently, the class of
bundle-boosted auctions is the subclass of VVCAs where the parameters are constant across
bidders.

The class of bundling-VCG auctions due to Kroer and Sandholm [2015] consists of all ϕ-
VCG auctions, where a ϕ-VCG auction runs VCG while treating each bundle in ϕ as an indi-
visible item. The class of bundling-VCG auctions is a subclass of the class of bundle-boosted
auctions: the ϕ-VCG auction can be represented by the bundle-boosted auction with ω(b) = 0
if b can be represented as a union of bundles from ϕ, and ω(b) = −∞ otherwise. The class of
bundle-boosted auctions is a subclass of the class of bundling-boosted auctions: a bundle-boosted
auction is a bundling-boosted auction with the restriction that ω(ϕ) =

∑
b∈ϕ ω(b).

Since bundling-boosted and bundle-boosted auctions are subclasses of λ-auctions, they are
both delineable with h(n) = (n+ 1)2m+1 due to Balcan et al. [2018d]. The following is a much
stronger delineability result that has no dependence on the number of bidders.
Theorem 10.1.12. The class of bundling-boosted auctions is (|Φ|, |Φ|2+m|Φ|3)-delineable and
the class of bundle-boosted auctions is (2m, |Φ|2 +m|Φ|3)-delineable.

Proof. We prove the result for bundling-boosted auctions. Fix the input set of bidders. For each
bundling ϕ, let βϕ = argmaxβ:blg(β)=ϕW (β), and let m(ϕ) denote the number of bundles in ϕ.
Note that if βϕ is not the ϕ-VCG allocation, then for ϕ′ the coarsest bundling respected by the
ϕ-VCG allocation, βϕ′ is the VCG allocation corresponding to both ϕ and ϕ′ (ϕ′ can be obtained
by combining certain bundles in ϕ).

Now, for any bundling-boosted auction parameters ω, the overall allocation chosen must be
one of {βϕ : ϕ ∈ Φ} (which contains as a subset the collection of all bundling VCG allocations,
as remarked above). This is because for any allocation α, α is given the same boost as βblg(α),
which has greater welfare by definition.

We now count the total number allocations that can ever be used by ω when any bidder is
absent. For a given ϕ ∈ Φ, exactly m(ϕ) bidders are allocated any items by βϕ. If bidder
i is not allocated any items by βϕ, then βϕ also maximizes welfare among all allocations α
such that blg(α) = ϕ when bidder i is absent. If bidder i is allocated something by βϕ, let
βϕ
−i = argmaxβ:blg(β)=ϕ W−i(β). For any setting of the parameters ω, the allocation used when

bidder i is absent will be of the form βϕ
−i. This is because for any allocation α,

W−i(α) + ω(blg(α)) ≤ W−i

(
β
blg(α)
−i

)
+ ω(blg(α)).

There are a total of m(ϕ) such unique allocations (not including βϕ). Now, if bidder i is not
allocated any items by βϕ for any ϕ ∈ Φ, the absence of bidder i does not change the allocation
used by any ω ∈ R|Φ|. The total number of bidders whose absence can change the allocation
used is thus at most ∑

ϕ∈Φ

m(ϕ) ≤ m|Φ|.

Finally, we count the number of hyperplanes partitioning the parameter space such that the
allocations used are constant within any region. There are

(|Φ|
2

)
hyperplanes of the form

W (βϕ) + ω(ϕ) = W (βϕ′
) + ω(ϕ′)

182

Bundle-boosted
auctions

Bundling-VCG
auctions

Bundling-boosted
auctions

⊂ ⊂

Bundle-size-
boosted auctions

⊂

Mixed-bundling auctions

⊂

Virtual-valuation
combinatorial auctions

⊂

λ-auctions

Affine-maximizer
auctions

⊂
⊂

⊂

Figure 10.1: Containment relations between auction classes. New auction classes introduced in
this section are in boldface.

for every ϕ, ϕ′ ∈ Φ. For each of the at most m|Φ| bidders whose absence potentially changes the
allocation used, there are at most

(|Φ|
2

)
hyperplanes of the form

W (βϕ
−i) + ω(ϕ) = W (βϕ′

−i) + ω(ϕ′)

for every ϕ, ϕ′ ∈ Φ such that i is allocated a nonempty bundle by βϕ and βϕ′ . The total number
of hyperplanes is thus at most(

|Φ|
2

)
+m|Φ|

(
|Φ|
2

)
< |Φ|2 +m|Φ|3.

Likhodedov and Sandholm [2005], Sandholm and Likhodedov [2015] (implicitly) study prop-
erties of the class of auctions parameterized by vectors ω ∈ Rm that specify additive boosts de-
pending on the size of the bundle. We call this class of auctions bundle-size-boosted auctions.
Bundle-size-boosted auctions are a subclass of bundle-boosted auctions: the equivalent bundle-
boosted auction satisfies ω(b) = ω(|b|). For the class of bundle-size-boosted auctions, we can
prove a stronger delineability result.
Theorem 10.1.13. The class of bundle-size-boosted auctions is (m,meO(

√
m))-delineable.

Proof. For a given bundle-size-boosted auction, consider the equivalent bundling-boosted auc-
tion. Any two bundlings that are indistinguishable with respect to the sizes of their bundles
are given the same boost, since ω(ϕ) =

∑
b∈ϕ ω(|b|). Hence, we may run the same argument

of Theorem 10.1.12 but instead of considering all |Φ| bundlings we only need to consider the
number p(m) of integer partitions of m. It is well known that there is a constant B such that
p(m) < eB

√
m.

Figure 10.1 summarizes the containment relations between the various auction classes.

183

Guarantees for Bundling-Boosted Auctions

The class of bundling-boosted auctions is a rich class of auctions. If the efficient allocation when
bidder i is absent also maximizes welfare when all bidders are present among all allocations
respecting the same finest bundling, there is a bundling-boosted auction that extracts revenue
equal to the welfare of the efficient allocation. More generally:
Theorem 10.1.14. Given a set of S bidders, let β denote the efficient allocation and let β−i

denote the efficient allocation when bidder i is absent. Let ∆i(S) = maxα:blg(α)=blg(β−i) W (α)−
W (β−i). There exists a bundling-boosted auction with revenue W (S)−

∑
i ∆i(S).

Proof. Let ϕ = blg(β) and for each i let ϕ−i = blg(β−i). Consider the bundling-boosted auction
with ω(ϕ) = 0, ω(ϕ−i) = W (β) − W (β−i), and ω(ϕ′) = −∞ for all other bundlings ϕ′ ∈
Φ \ {ϕ, ϕ−1, . . . , ϕ−n}.

We show that when ∆i(S) = 0 for all i, this auction extracts revenue equal to W (S). The
proof of the more general statement in terms of ∆i(S) is similar; we describe the necessary
modifications at the end. First we show that β is the overall allocation chosen by this auction.
For any α such that blg(α) /∈ {ϕ, ϕ−1, . . . , ϕ−n}, λ(α) = −∞, so such allocations are never
chosen.
Case 1. blg(α) = ϕ. Then as λ(β) = λ(α) = ω(ϕ) = 0, W (β) + λ(β) ≥ W (α) + λ(α), since β
is an efficient allocation.
Case 2. blg(α) = ϕ−i for some i. Then λ(α) = ω(ϕ−i) and W (β−i) ≥ W (α), so W (β)+λ(β) =
W (β) = W (α) + (W (β)−W (α)) ≥ W (α) + (W (β)−W (β−i)) = W (α) + λ(α) for all i.

Hence β is the overall allocation used. Next we show that when bidder i is absent, β−i is the
allocation used by this auction.
Case 1. blg(α) = ϕ. Then W−i(β−i) + λ(β−i) = W (β) ≥ W (α) ≥ W (α) − vi(α) =
W−i(α) + λ(α).
Case 2. blg(α) = ϕ−i. Then λ(β−i) = λ(α) = ω(ϕ−i), so W−i(β−i)+λ(β−i) ≥ W−i(α)+λ(α).
Case 3. blg(α) = ϕ−k for k ̸= i. Then W (β−k) ≥ W (α), so W−i(α) + λ(α) = W−i(α) +
W (β)−W (β−k) ≤ W−i(α) +W (β)−W (α) = W (β)− vi(α) ≤ W (β) = W (β−i) + λ(β−i).

Hence β−i is the allocation used when bidder i is not present. We have shown that the alloca-
tions used by this bundling-boosted auction are precisely the VCG allocations. The payment of
bidder i is therefore (W−i(β−i)+λ(β−i))−(W−i(β)+λ(β)) = W (β)−(W (β)−vi(β)) = vi(β),
and so the total revenue is W (β). The proof of the general statement is similar. The only dif-
ference is that ω might not use the VCG allocations, but is guaranteed to use allocations for
which the boosted welfare does not differ much from that of the corresponding VCG allocation
by much.

We give a simple example of bidder valuations that satisfy ∆i(S
′) = 0 for every i and every

S ′ ⊆ S involving bidders whose “most desired” bundles intersect.
Example 10.1.15. Let b1, . . . , bn ⊆ {1, . . . ,m} be distinct bundles such that bi ∩ bj ̸= ∅ for
every i, j. Let c1 > c2 > · · · > cn > 0, and let ε > 0 be sufficiently small. The valuation
of bidder i satisfies vi(b) = ci if b ⊇ bi and vi(b) ≤ ε otherwise. Then, for any subset of the
bidders S ′ ⊆ {1, . . . , n}, the welfare-maximizing allocation gives bundle bi to i = min(S ′) and
allocates the remaining items to the other bidders. When i is absent, the welfare-maximizing
allocation gives bundle bi′ to i′ = min(S ′ \ {i}) and allocates the remaining items to the other

184

bidders. This is clearly the welfare-maximizing allocation among all allocations respecting the
same finest bundling. Now, for each j ̸= i, if the finest bundlings respected by each of the
welfare-maximizing allocations when j is absent are all distinct, then ∆i(S

′) = 0 for every
i, S ′. (since the welfare-maximizing allocation gives bi to i and uses a distinct bundling on the
remaining buyers for each j). Otherwise, ∆i(S

′) is nevertheless small, since the welfare extracted
from bidders excluding i when any bidder j ̸= i is absent is small.

Concentration inequalities enable us to provide bounds on LM(Spar) for the class of bundling-
boosted auctions. We have ESpar [OPTM(Spar)] ≥ ESpar [W (Spar)−

∑
i ∆i(Spar)] ≥ pW (S)−∑

i ∆i(Spar). If we run LWI with parameters p, q,N , we have (assuming for readability that
∆i(Spar) = 0 for all i) LM(Spar) ≥ (1 − η)p with probability ≥ 1 − e−2η2p2W (S)2/||v̄||22 , where
v̄ = (maxb⊆{1,...,m} vi(b))i∈S ∈ Rn, by McDiarmid’s inequality.

Combined with Theorem 10.1.5, we get our main guarantee for the class of bundling-boosted
auctions. For readability, we state our guarantees assuming ∆i(Spar) = 0 for every i.
Theorem 10.1.16. LetM be the class of bundling-boosted auctions. Let N ≥ N(ε, δ,Pdim(M))
and run LWI with parameters N, p, q. As long as W (S)2 ≥ ||v̄||22 ln(1/δ)/2η2p2, RevM̂(Spar) ≥
W (S)((1− η)p− ε)− 2τM(q, Spar) with probability ≥ 1− 3δ conditional on ∆i(Spar) = 0 for
all i.

Removing the assumption on ∆i(Spar) would replace the (1−η)p loss term with (1−η)(p−∑
i ∆i(Spar)/W (S)).

10.1.4 Efficient Learning Within an Instance

We now explore two mechanism classes for which LWI can be implemented efficiently by lever-
aging efficient routines for solving winner determination (a generalization of the problem of
computing efficient allocations). Though computing M̂ = argmaxM∈M

1
N

∑N
t=1 RevM(St) is

NP-hard since it involves solving winner determination (which is well known to be NP-hard)
winner determination can be solved efficiently in practice [Sandholm et al., 2005].

For the class of bundling-VCG auctions, we show that the branch-and-bound technique
of Kroer and Sandholm [2015] is compatible with LWI. We did not derive a revenue-guarantee
for this class of auctions, however. For the class of sparse bundling-boosted auctions, which are
bundling-boosted auctions with a constant number of positive boosts, we show that a revenue
guarantee similar to (but more sample efficient than) Theorem 10.1.16 holds. We then show how
LWI can be efficiently implemented for this class.

Bundling-VCG Auctions

Kroer and Sandholm [2015] give a branch-and-bound algorithm to compute the revenue-maximizing
bundling-VCG auction for a given set of bidders. While our setting is different than theirs, their
integer-program techniques can be directly used by LWI. Let f denote a function used as an upper
bound in branch-and-bound to compute the optimal bundling. For learning groups S1, . . . , SN

and x a node in the search tree (corresponding to a partial bundling), let f̂(x) = 1
N

∑
t f(x;St).

Recall that f is admissible if its value at any node is an upper bound for the maximum rev-
enue obtainable in the subtree rooted at that node, and f is monotonic if it decreases down each

185

path in the search tree. These properties ensure that branch-and-bound finds the revenue-optimal
bundling.
Proposition 10.1.17. If f is admissible for computing the optimal bundling, f̂ is admissible for
computing the empirically optimal bundling. The same holds for monotonicity.

Proof. Suppose we are at node x of a branch-and-bound computation (representing a partial
bundling). Let Tx denote the subtree rooted at x. Then,

f̂(x) =
1

N

N∑
t=1

f(x;St) ≥
1

N

N∑
t=1

max
ϕ∈Tx

Revϕ(St) ≥ max
ϕ∈Tx

1

N

N∑
t=1

Revϕ(St).

Monotonicity of f̂ is also immediate.

Sparse Bundling-Boosted Auctions

Let Φ0 ⊂ Φ with |Φ0| = B, and let m0 be the number of bundles in the finest bundling in Φ0.
Consider the subclass of bundling-boosted auctions for which ω(ϕ) > 0 only if ϕ ∈ Φ0 (and
ω(ϕ) = 0 otherwise), which we call Φ0-bundling-boosted auctions. The same argument used to
prove Theorem 10.1.12 shows that the class of Φ0-bundling-boosted auctions is (B,B2+m0B

3)-
delineable. Let WΦ0(S) denote the welfare of the welfare-maximizing allocation to bidders in
S, subject to the constraint that the finest bundling respected by the allocation is in Φ0. The same
arguments used to obtain Theorem 10.1.14 yield a guarantee with respect to WΦ0(S).
Theorem 10.1.18. LetM be the class of Φ0-bundling-boosted auctions. Let N ≥ N(ε, δ,Pdim(M))
and run LWI with parameters N, p, q. As long as WΦ0(S)2 ≥ ||v̄||22 ln(1/δ)/2η2p2, RevM̂(Spar) ≥
WΦ0(S)((1 − η)p − ε) − 2τM(q, Spar) with probability ≥ 1 − 3δ conditional on ∆i(Spar) = 0
for all i.

For B a fixed constant, the number of learning groups N required by LWI is O(B ln(m0B))
(hiding the dependence on ε and δ). In contrast, optimizing over the entire class of bundling-
boosted auctions as in Theorem 10.1.16 would require N to be exponential (in m). For this class
of auctions, we describe an algorithm that implements LWI with run-time exponential in B but
polynomial in all other parameters (including the run time of the winner determination routine
used). A similar algorithm was used in Balcan et al. [2020c], though in a different setting than
ours.
Theorem 10.1.19. Let B = |Φ0|, and let m0 be the number of bundles in the finest bundling in
Φ0. Given learning groups S1, . . . , SN , the empirical-revenue maximizing Φ0-bundling-boosted
auction can be computed in (Nm0B)O(B) + 2w(m0, n)Nm0B time, where w(m0, n) is the time
required to solve winner determination for n buyers with valuations over m0 items.

Proof. For a bundling ϕ ∈ Φ, let Winner(ϕ, St) denote the welfare-maximizing allocation among
bidders in St respecting bundling ϕ. Let βϕ,t = Winner(ϕ, St) and let Sϕ

t ⊆ St be the set
of bidders in St who get allocated a nonempty bundle by βϕ,t. For each bidder i ∈ Sϕ

t , let
βϕ,t
−i = Winner(ϕ, St \ {i}). The proof of Theorem 10.1.12 shows that any ω must use a subset

of these allocations. Winner is called at most NB +Nm0B times, since |Sϕ
t | ≤ m0.

186

For each t and each pair of bundlings ϕ, ϕ′, let H(t, ϕ, ϕ′) denote the hyperplane∑
i∈St

vi(β
ϕ,t) + ω(ϕ) =

∑
i∈St

vi(β
ϕ′,t) + ω(ϕ′),

and for each i ∈ Sϕ
t let H−i(t, ϕ, ϕ

′) denote the hyperplane∑
j∈St\{i}

vj(β
ϕ,t
−i) + ω(ϕ) =

∑
j∈St\{i}

vj(β
ϕ′,t
−i) + ω(ϕ′).

Let H denote the collection of these hyperplanes. The total number of such hyperplanes is at
most NB2 + Nm0B

2 (as argued in Theorem 10.1.12). It is a basic combinatorial fact that H
partitions RB into at most |H|B ≤ (NB2 + Nm0B

2)B ≤ (2Nm0B
2)B regions (each region is

an intersection of at most |H| halfspaces). The empirical revenue over S1, . . . , SN is linear in ω
over each region, since the allocations of the bundling-boosted auction remain constant within
each region. Thus, the maximum empirical revenue can be found by solving a linear program
within each region. Each linear program involves B variables and at most |H| constraints and
can thus be solved in poly(|H|, B) time.

A representation of each of the regions as a 0/1 vector of length |H| can be computed in
poly(|H|B) time using the following high-level procedure. Initialize the list of regions as RB

(represented by the empty set of constraints). Iterate over the set of hyperplanes. For each
hyperplane, check whether it intersects any region in the current list of regions. If so, update each
region it intersects by adding the two constraints corresponding to the two new halfspaces. Our
algorithm solves the corresponding linear program for every such region and picks the solution
that yields highest empirical revenue.

10.1.5 Structural Revenue Maximization
Suppose the mechanism designer can only sample a limited number N of learning groups (due
to a run-time constrant, for example). We introduced several new auction classes, but which
one should the mechanism designer use in conjunction with LWI? Structural revenue maximiza-
tion (SRM) helps answer this question. SRM suggests maximizing empirical revenue minus
a regularization term that penalizes more complex mechanisms to ensure that the chosen auc-
tion is indeed likely to generalize well, rather than overfitting to the learning groups. Our
generalization guarantee in Theorem 10.1.2 provides the appropriate regularizer εM(N, δ) =
240
√
Pdim(M)/N +

√
2 ln(1/δ)/N . Say the mechanism designer is deciding between auc-

tions in M1 and auctions in M2. Let M̂1, M̂2 be the empirical-revenue-maximizing auctions
fromM1 andM2, respectively, for one run of LWI. The mechanism designer should use mech-
anism M̂k, k ∈ {1, 2}, that maximizes 1

N

∑
t RevM̂k

(St) − εMk
(N, δ) since empirical revenue

minus εM(N, δ) is a more accurate lower bound on expected revenue than empirical revenue
alone. An SRM approach combined with LWI is incentive compatible since the final mechanism
only depends on the learning groups of bidders. Our use of SRM is similar to SRM across in-
stances, which was discussed in Balcan et al. [2018d]. SRM for auction design was first proposed
by Balcan et al. [2005], also for learning within an instance (but for unlimited supply).

187

10.2 Maximizing Revenue Under Market Shrinkage and Mar-
ket Uncertainty

A shrinking market with uncertain buyer participation is a natural phase of products’ and ser-
vices’ lifecycles. Current examples of great importance include media consumers—known as
cord cutters—who cancel cable-TV subscriptions in favor of streaming services [Aliloupour,
2016, Massad, 2018], a thinning customer base for department stores due to online retailers like
Amazon [Goldmanis et al., 2010, Cusumano, 2017], and reduced capacities for restaurants during
the COVID-19 pandemic [Song et al., 2021]. In this work we study how mechanism design can
help preserve revenue in this ubiquitous challenge of a shrinking market, specifically for combi-
natorial auctions for limited supply. The seller has m indivisible items to allocate to a set S of
n bidders. The bidders can express how much they value each possible bundle b ⊆ {1, . . . ,m}
of items. The design of revenue-maximizing combinatorial auctions in multi-item, multi-bidder
settings is an elusive and difficult problem that has spurred a long and active line of research
combining techniques from economics, artificial intelligence, and theoretical computer science.
This is still largely an open question and a very active research area.

We start a new strand within that topic area, namely the study of shrinking markets with
uncertain buyer participation. We introduce the first formal model of market shrinkage in multi-
item settings, and prove the first revenue guarantees. Specifically, we show how much revenue
can be preserved when only a random unknown fraction of the set S of bidders participates in
the market.

Main contributions We present the first formal analysis of how much revenue can be pre-
served in a shrinking market, for multi-item settings. More precisely, there is a set S of n bidders
that is known to the mechanism designer. Each bidder participates in the market independently
with probability p, but the valuations of the bidders who participate in the market, denoted by
S0 ⊆ S, are unknown (what is known is that they belong to S). We present a learning-based
method for designing a mechanism that satisfies the first known revenue-preservation guarantees
in this setting.

After formally defining the problem setting, we precisely show how to reckon with subtleties
that arise when auctions are run among a shrunken market of unknown size. We then provide
and discuss a simple example of a market where reduced competition in a shrinking market
drives revenue to a lower threshold than one might expect. We furthermore show that if bidders’
valuation functions can depend on what items other bidders receive, there exist scenarios in which
only an exponentially small (in the number of items) fraction of the revenue obtainable by even
the vanilla VCG auction on S can be guaranteed on a random subset of bidders, even if a large
fraction of the market shows up. For example, if 50 items are for sale and each bidder shows
up independently with 90% probability, our construction yields a maximum expected revenue
of roughly 7% of the VCG revenue on S. If 100 items are for sale, at most 0.52% of the VCG
revenue on S can be guaranteed.

Our main theorem is the following revenue guarantee obtained via a sample-based learning
algorithm. Delineability is a structural assumption introduced by Balcan et al. [2018d] satisfied
by nearly all commonly studied auction classes. WM(S) denotes the maximum welfare achiev-

188

able by mechanisms inM, k is a term that depends on the number of winners in any mechanism
inM, and γ is a constant that depends on S. RevM denotes the revenue function induced by M .
Theorem 10.2.1. LetM be (d, h)-delineable class of mechanisms. A mechanism M̃ ∈M such
that

E[RevM̃(S0)] ≥ Ω
(

p2

k
1+log1/γ (4/p)

)
WM(S)− ε

with probability at least 1 − δ can be computed in NhT + (Nh)O(d) time, where T is the time
required to generate any given hyperplane witnessing delineability of any mechanism inM and
N = O

(
d log(dh)

ε2
log(1

δ
)
)
.

To prove our theorem, we first prove that

sup
M∈M

E[RevM(S0)] ≥ Ω

(
p2

k1+log1/γ(4/p)

)
WM(S),

which is the major technical contribution of this work. Our main technique is the analysis of
a novel combinatorial structure we construct called a winner diagram, which is a graph that
concisely captures all possible executions of an auction on an uncertain set of bidders. Via
a probabilistic method argument that randomizes over a subgraph of the winner diagram, we
arrive at a general possibility result: ifM is a sufficiently rich class of mechanisms, there always
exists an M ∈M that is robust to uncertainty/shrinkage in the market. This implies our bound
on supE[RevM(S0)]. We primarily focus on the case where bidders participate in the market
independently with probability p, but show how to generalize our results to any distribution
over submarkets. Our bound is a parameterized guarantee that has interesting applications to
practically motivated auction constraints: (1) limiting the number of winners and (2) bundling
constraints on items.

We then present a learning algorithm to compute a mechanism M̃ such that

E[RevM̃(S0)] ≥ sup
M

E[RevM(S0)]− ε

with high probability, which proves Theorem 10.2.1. Our algorithm exploits geometric structure
and a linear-programming approach over hyperplane arrangements. We show the run-time of
our procedure is computationally tractable for a specific auction class by leveraging practically-
efficient routines for solving the winner determination problem.

Related work on shrinking markets and uncertainty Shrinking markets have been studied
by various researchers in the context of oil companies [Van de Graaf, 2018], cable TV [Aliloupour,
2016, Massad, 2018], labor markets [Jones and Seitani, 2019], telecom markets [Neokosmidis
et al., 2018], housing markets [Kawai et al., 2019], and in combinatorial settings including a
thinning customer base for department stores due to online retailers like Amazon [Goldmanis
et al., 2010, Cusumano, 2017] and reduced capacities for restaurants during the COVID-19 pan-
demic [Song et al., 2021]. Most of this existing research is extremely domain specific, and
provides advisory content based on historical observations, data, and general economic knowl-
edge. We introduce the first formal model of market shrinkage in multi-item settings, and prove
the first known guarantees for how much revenue can be preserved in a shrinking market. Our

189

guarantee on the revenue preserved in a shrinking market provides a positive contrast to recent
work of Dobzinski and Uziely [2018], who study the effect of market shrinkage on revenue loss.
They show that even in the case of selling a single item to n buyers with known valuation dis-
tributions, the absence of a single buyer with a fixed “low” value can surprisingly result in a
(multiplicative) revenue loss of 1

e+1
(in expectation). We tackle the significantly more complex

multi-item setting. Furthermore, our main results are prior-free (in that they are tailored to the
specific set S of bidders and do not require bidders to come from a distribution) and thus provide
a strong positive contrast to this negative result.

Our results can also be viewed from the perspective of an uncertain market, since at the
point of the mechanism design the subset of bidders that participates in the market is unknown.
Mechanism design with uncertainty about bidder valuations has previously studied [Lopomo
et al., 2021, Todo, 2020], but to the best of our knowledge the prior-free setting for combinatorial
auctions has not been considered.

10.2.1 Problem formulation

We study a model of limited-supply combinatorial auctions that is identical to the one in the
previous section.

Market-size uncertainty In our model, the mechanism designer has full knowledge of the
entire population of bidders S (described by their valuation functions). An unknown random
subset of S participates in the market. We write S0 ∼p S to denote a subset S0 that is sampled
from S by including each bidder in S0 independently with probability p. More generally, for a
distribution D over 2S , we write S0 ∼D S to denote a random subset of S chosen according to
D. We are interested in what happens to the maximum revenue achievable when only a random
fraction of the set S of bidders participates in the auction, that is, supM∈M ES0∼DS[RevM(S0)].

Since a variable group of bidders of variable size can participate in the auction mechanisms
we run, we require the important assumption that auctions inM can be run on variable-size sets
of bidders in a well-defined manner. Various well-studied classes of auctions satisfy this prop-
erty: examples include the class of VCG auctions with reserve prices, λ-auctions [Jehiel et al.,
2007], affine-maximizer auctions [Roberts, 1979], and various population-size-independent auc-
tions in Balcan et al. [2021c] (covered in the previous section). We assume that the mechanism
designer knows the valuations of the bidders in S to begin with. So, each bidder can be thought
of having an identity (for example, “the bidder who values apples at x and oranges at y”, or “the
bidder with valuation function v4”), and the mechanism designer knows the identities/valuations
v1, . . . , vn of all bidders in S. An allocation, formally, is a mapping from items to bidder identi-
ties.

The sequence of mechanism design and revelation in our setting is the same as in the standard
mechanism design setting. Specifically, the mechanism design (computation of a mechanism
fromM) takes place before the bidders in the shrunken market are asked to reveal their valua-
tions. This is important for incentive compatibility, that is, for motivating the bidders to reveal
their true valuations. If the design/choice of M ∈M is allowed to be based on the revealed val-
uations, the auction might not be incentive compatible. (The class of second price auctions with

190

reserve prices for a single item serves as an illustrative example. Choosing the reserve price to
maximize revenue after the shrunken market is revealed clearly violates incentive compatibility.)
Because the designer does not know exactly which bidders are in the shrunken market S0, the
designer has uncertainty about the valuations of the bidders. He only knows that they belong to
S.

Assumptions onM and S For any S ′ ⊆ S, let WM(S ′) = maxM∈MWM(S ′) and RevM(S ′) =
maxM∈M RevM(S ′). Let winM(S ′) denote the set of bidders in S ′ that win a nonempty bundle
of items per M . Let winM(S ′) denote the set of bidders in S ′ that win a nonempty bundle of
items per the mechanism in M achieving WM(S ′). The following two assumptions are the most
critical ones.

Welfare submodularity ∀ S1, S2 ⊆ S, WM(S1) +WM(S2) ≥ WM(S1 ∪ S2) +WM(S1 ∩ S2).

Winner monotonicity ∀ S ′′ ⊆ S ′ ⊆ S,∀ i ∈ S ′′, i ∈ winM(S ′) =⇒ i ∈ winM(S ′′).

Suppose WM(S ′) = WV CG(S
′) for any S ′ ⊆ S, that is,M is sufficiently rich to be able to al-

locate items efficiently (as is the case with all mechanisms in the hierarchies discussed by Balcan
et al. [2018d, 2021c]). Then, welfare submodularity implies winner monotonicity [Guo, 2011].
If the valuation functions of bidders in S satisfy the gross-substitutes property, then both welfare
submodularity and winner monotonicity hold [Gul and Stacchetti, 1999, Yokoo et al., 2004, Guo,
2011].

The final assumptions stipulate thatM is a sufficiently rich class of mechanisms. We assume
that RevM(S ′) = WM(S ′) = WV CG(S

′) for all S ′ ⊆ S, and further thatM satisfies the follow-
ing “global VCG-like” property: RevM(S ′) depends only on winM(S ′) and winM(S ′ \ {i}) for
each i ∈ winM(S ′). In words, these conditions stipulate the following: (1)M is sufficiently rich
such that in a non-truthful full-information setting,M can always extract the full social surplus
WM(S ′) = WV CG(S

′) as revenue and (2) for any S ′, the payments collected by the revenue-
maximizing mechanism M that achieves RevM(S ′) depend only on WM(S) and the maximum
welfares WM(S \ {i}) achievable when each bidder drops out.

As a concrete example, if S is a set of bidders with gross-substitutes valuations, then the class
of λ-auctions and the class of affine-maximizer auctions satisfy all of the above properties.

10.2.2 Revenue loss can be drastic
At first glance it might appear that the expected revenue preserved by a mechanism M when
each bidder participates independently with probability p should simply be p ·RevM(S) (or more
if one thinks of revenue as having diminishing returns in the number of bidders). This intuition
is indeed accurate if RevM is a submodular function (which captures the diminishing returns
property). However, revenue can shrink by more than this when mechanisms inM do not have
submodular revenue. One reason for greater revenue loss is reduced competition among buyers.
For example, suppose there are m items and 2m bidders, where bidder i for 1 ≤ i ≤ m has
valuation vi(b) = c if i ∈ b and vi(b) = 0 otherwise, and bidder m + i for 1 ≤ i ≤ m has
valuation vm+i(b) = c − ε/m if i ∈ b and vm+i(b) = 0 otherwise (bidders have combinatorial
valuations in this example, so valuation functions only depend on the bundle of items received).
The VCG auction will allocate item i ∈ {1, . . . ,m} to bidder i. The payment collected from

191

bidder i will be c− ε/m, which is the second highest value for item i. The revenue from VCG is
thus mc − ε = W (S) − ε. Now, suppose each bidder participates in the auction independently
with probability p. The expected revenue can be computed by breaking it up across items:

E[RevV CG(S0)] =
m∑
i=1

E[Revenue from item i] =
m∑
i=1

p2(c− ε/m) = p2(W (S)− ε).

The third equality is due to the fact that VCG generates nonzero revenue from item i if and
only if both bidders i and m + i participate, since if at most one of them shows up there is no
competition for that item. So E[RevV CG(S0)] = p2 · RevV CG(S).

Furthermore, if bidders’ valuations are allocational, that is, vi(α) can depend on what items
other bidders receive, revenue loss can be even more dramatic.
Theorem 10.2.1. For any ε > 0 there exists a set S of bidders with allocational valuations such
that for S0 ∼p S, E[RevM(S0)] ≤ pm/2 · (RevV CG(S) + 2ε) + ε for any individually rational
auction M .

Proof. For each item 1 ≤ i ≤ m/2 we introduce two buyers with valuations vi,1, vi,2. For each
item m/2 + 1 ≤ j ≤ m we introduce a single buyer with valuation vj . For 1 ≤ i ≤ m/2
valuations vi,1 are defined by vi,1(α) = c if bidder (i, 1) is allocated item i and bidders j =
m/2 + 1, . . . ,m each receive at least one item, and vi,1(α) = 0 otherwise. Valuations vi,2 are
defined by vi,2(α) = c−2ε/m if bidder (i, 2) is allocated item i and bidders j = m/2+1, . . . ,m
each receive at least one item, and vi,2(α) = 0 otherwise. The only requirement on the valuations
of bidders j = m/2 + 1, . . . ,m is that vj(α) ≤ 2ε/m for all α. The VCG auction would
allocate item i to bidder (i, 1) for each i = 1, . . . ,m/2, and allocate the remaining m/2 items
to bidders j = m/2 + 1, . . . ,m such that each bidder j receives exactly one item. The welfare
of this (efficient) allocation is at most cm/2 + ε. The revenue obtained by VCG is at least
cm/2− ε = W (S)− 2ε. Let S∗ denote the set of small-valuation bidders j = m/2 + 1, . . . ,m.
If each bidder shows up independently with probability p, the expected revenue of any auction
M is

E[RevM(S0)] = E[RevM(S0) | S∗ ⊆ S0] · Pr(S∗ ⊆ S0) + E[RevM(S0) | S∗ ⊈ S0] · Pr(S∗ ⊈ S0)

≤ pm/2 · E[RevM(S0) | S∗ ⊆ S0] + E[RevM(S0) | S∗ ⊈ S0]

≤ pm/2 · E[W (S0) | S∗ ⊆ S0] +W (S∗)

≤ pm/2 ·W (S) + ε,

as desired.

The exponential revenue decay in the number of items means that even if the shrunken market
is large in expectation, the revenue loss can be dramatic. For example, if 50 items are for sale
and each bidder shows up independently with 90% probability, our construction shows that any
auction can guarantee only at most roughly 7% of the VCG revenue on S. If 100 items are for
sale, at most 0.52% of the VCG revenue on S can be guaranteed.

192

10.2.3 Main guarantee on preserved revenue
We now present our main revenue guarantee when each bidder participates in the auction inde-
pendently with probability p. For a set of bidders S ′ ⊆ S, let ω(S ′) = winM(S ′)∪(∪i∈S′winM(S ′\
{i})) be the set of bidders in S ′ whose valuations determine RevM(S ′). Define an equiva-
lence relation ≡ on subsets of S by S1 ≡ S2 if and only if ω(S1) = ω(S2). Let φ(S ′) =
1
n

∑n
i=1 WM(S ′ \{i}). φ serves as a potential function in the proof of the following theorem and

represents the average max-welfare of S ′ when a uniformly random bidder in S drops out.

Mechanism A
(1) Let S1, . . . , Sℓ be an enumeration of the equivalence classes with φ(Si) >

p
4
WM(S).

(2) Let M1, . . . ,Mℓ denote the mechanisms that achieve RevM(S1), . . . ,RevM(Sℓ).
(3) Choose M uniformly at random from {M1, . . . ,Mℓ}, and run M .

The main challenge in analyzing this mechanism is bounding ℓ. Before we do that, we
analyze the revenue guarantee it satisfies in terms of ℓ.
Lemma 10.2.2. Let |S| ≥ 2. For S0 ∼p S, E[RevA(S0)] ≥ Ω(p2/ℓ)WM(S).

Proof. By definition of ω, if S1 ≡ S2, then WM(S1) = WM(S2), φ(S1) = φ(S2), and
RevM(S1) = RevM(S2) (and the maximum revenue is achieved by the same M ∈ M for
both sets). Call a set of bidders S ′ ⊆ S heavy if φ(S ′) > p

4
WM(S). If S0 is heavy, there is

M ∈ {M1, . . . ,Mℓ} such that RevM(S0) = WM(S0), so EA[RevA(S0)] ≥ 1
ℓ
W (S0) ≥ 1

ℓ
φ(S0) >

p/4
ℓ
WM(S). Let H denote the event that S0 is heavy. Then,

E
A
[E
S0

[RevA(S0)]] = E
S0

[
E
A
[RevA(S0)]

]
≥ E

S0

[
E
A
[RevA(S0)|H]

]
· Pr(H) ≥ p/4

ℓ
W (S) · Pr(H).

We now derive a lower bound on Pr(H). We have

E
S0

[φ(S0)] = E
S0

[
1

n

n∑
i=1

WM(S0 \ {i})

]
= E

i∼S

[
E
S0

[WM(S0 \ {i})]
]
≥ p

2
WM(S)

where in the final inequality we use the fact that |S| ≥ 2 and that WM is submodular, and so
by Hartline et al. [2008], ES0 [WM(S0)] ≥ pWM(S). By Markov’s inequality on the (nonnega-
tive) random variable WM(S)− φ(S0),

Pr(S0 is heavy) ≥ (p/2)WM(S)− (p/4)WM(S)

WM(S)− (p/4)WM(S)
=

p/4

1− p/4
≥ p

4
.

Substituting this into our previous bound yields EA[ES0 [RevA(S0)]] ≥ p2

16ℓ
WM(S), as desired.

We now bound the number of heavy equivalence classes ℓ. In order to do this, we introduce
the notion of a winner diagram, which is a subgraph of the Hasse diagram of S. The winner
diagram for S is the following directed graph G: each node is labeled (S ′, ω(S ′)) for some subset

193

{v1,v2,v3,v4}
{v3,v4}

{v1,v2,v4}
{v2,v4}

{v1,v2,v3}
{v2,v3}

{v1,v4}
{v1,v4}

{v1,v2}
{v1,v2}

{v1,v3}
{v1,v3}

{v4}
{v4}

{v1}
{v1}

{v2}
{v2}

{v3}
{v3}

Figure 10.2: A winner diagram representing a second-price auction with a single item and four
bidders with valuations S = {v1 = 1, v2 = 2, v3 = 4, v4 = 8}. At each node, the top set S ′ is the
set of remaining bidders, and the bottom set is the set of bidders ω(S ′) that actually determine
revenue. Boxed nodes represent heavy equivalence classes for p = 8/9, which is the subgraph
of the winner diagram A randomizes over.

S ′ ⊂ S. The root node is labeled (S, ω(S)). The children of node (S ′, ω(S ′)) are given by (S ′ \
{i}, ω(S ′ \ {i})) for each i ∈ ω(S ′). Figure 10.2 illustrates the winner diagram corresponding to
a second-price auction for a single item with four bidders. Winner monotonicity will allow us to
show that G contains a node that represents every equivalence class of ≡.
Lemma 10.2.3. G contains all equivalence classes of ≡.

Proof. Let S∗ ⊆ S be a set of bidders that arises as a winner set, that is, S∗ = ω(S ′′) for some
S ′′ ⊇ S∗. The set S ′ ⊃ S ′′ ⊃ S∗ is maximal for S∗ if ω(S ′) = S∗ and ω(S ′ ∪ {i}) ̸= S∗ for
every i /∈ S ′. We show that for a given winner set of bidders S∗, there is a unique maximal set
of bidders S ′ ⊇ S∗ such that ω(S ′) = S∗. Initialize S ′ = S∗, and greedily add bidders from
S to S ′ while ω(S ′) = S∗ does not change. Due to winner monotonicity, if i /∈ ω(S ′), then
i /∈ ω(S ′ ∪ {j}) for any bidder j. Hence, the order in which bidders are added by the greedy
procedure does not matter, and therefore the final set S ′ is the unique maximal set for S∗. Let the
representative element of each equivalence class [(S ′, ω(S ′))] be the one such that S ′ is maximal
for ω(S ′).

We prove the lemma by backwards induction on the size of the representative set S ′ of any
equivalence class. The base case of |S ′| = n is immediate since the root (S, ω(S)) is the only
node for which the representative set has size n. For the inductive step suppose that G con-
tains a node for every equivalence class for which the representative set is of size at least n′.
Let (S ′, ω(S ′)) be the representative of an equivalence class with |S ′| = n′ − 1. Let i /∈ S ′

be a bidder such that i ∈ ω(S ′ ∪ {i}). Such an i exists due to winner monotonicity: if
i ∈ ω(S), then i ∈ ω(S ′ ∪ {i}), since S ′ ∪ {i} ⊂ S. Let S ′′ be the maximal set such that
ω(S ′′) = ω(S ′ ∪ {i}). We have |S ′′| ≥ |S ′ ∪ {i}| > |S ′|, so by the induction hypothesis G

194

S ′ ∪ {i} S ′′

S ′′ \ {j1}

...

S ′ S ′′ \ {j1, . . . , jr}

S′′ maximal s.t. ω(S′′)=ω(S′∪{i})

i∈S\S′ s.t. i∈ω(S′∪{i})

Figure 10.3: Illustration of the inductive step in Lemma 10.2.3. Boxed sets correspond to repre-
sentative elements of equivalence classes in G. Solid arrows represent directed edges in G from
parent to child.

contains a node labelled (S ′′, ω(S ′′)). Now, there must exist a bidder j1 ∈ S ′′ \ S ′ such that
j1 ∈ ω(S ′′). If not, adding all the bidders in S ′′ \ S ′ to S ′ would not introduce any new winners,
that is, ω (S ′ ∪ (S ′′ \ S ′)) = ω (S ′′) = ω (S ′) , which contradicts the maximality of S ′ for ω(S ′).
Therefore, the node (S ′′, ω(S ′′)) has a child

(S ′′ \ {j1}, ω (S ′′ \ {j1}))

(S ′′\{j1} is maximal due to winner monotonicity). We may now find a bidder j2 ∈ S ′′\{j1}\S ′

such that j2 ∈ ω(S ′′ \ {j1} \ S ′) for the same reason as before. Continuing in this fashion yields
a path from (S ′′, ω(S ′′)) to (S ′, ω(S ′)), so (S ′, ω(S ′)) ∈ G, as desired.

Combining Lemmas 10.2.2 and 10.2.3 yields our main guarantee. Let γ = maxS′,i∈ω(S′)
φ(S′\{i})
φ(S′)

and let k = maxS′ |ω(S ′)|. We have k ≤ 2m. The parameter γ measures the smallest decrease
in φ between any two levels of G, which we use to control the depth of nodes considered by
our main mechanism A. We stipulate that γ < 1. The full version of the paper discusses how
to remove this assumption and replace γ with an appropriate parameter that is unconditionally
strictly less than 1.
Theorem 10.2.4. Let |S| ≥ 2 and S0 ∼p S. We have

EA[ES0 [RevA(S0)]] ≥ Ω
(

p2

k
1+log1/γ (4/p)

)
WM(S).

IfM consists of revenue-monotonic mechanisms the slightly improved bound Ω(p2

k
log1/γ (4/p))WM(S)

holds. In particular, there exist mechanisms inM achieving the above guarantees in expectation.

Proof. Let G ′ denote the restriction of the winner diagram G to nodes representing heavy equiv-
alence classes. Each node of G ′ has out-degree at most k = maxS′ |ω(S ′)|, and the depth of G ′

is at most log1/γ
(

WM(S)
(p/4)WM(S)

)
= log1/γ(4/p) since φ decreases by a factor of at least γ when

195

passing from a parent node to a child node (and G is truncated at nodes that are not heavy).
Hence the number of nodes in G ′ is at most k1+log1/γ(4/p). If mechanisms in M are revenue
monotonic, then we may modify A to randomize only over mechanisms corresponding to nodes
of G ′ with out-degree 0. The number of such nodes is at most klog1/γ(4/p). By Lemma 10.2.3, we
may substitute this quantity for ℓ in Lemma 10.2.2, which completes the proof.

We have thus shown, via an application of the probabilistic method, that ifM is a sufficiently
rich mechanism class, there always exists M ∈ M that is robust to uncertainty in the market.
Thus, supM∈M E[RevM(S0)] ≥ Ω(p2

k
1+log1/γ (4/p))WM(S), with a slight improvement under rev-

enue monotonicity.

Applications

The dependence of Theorem 10.2.4 on maxS′ |ω(S ′)| allows us to derive interesting families of
guarantees when the seller places practical constraints on the auction setting. The first is a con-
straint on the number of winners, and the second is a bundling constraint that favors allocations
that sell certain items together. Reasons for limiting the number of winners include: (1) avoiding
the logistical hassle of having a large number of winners – this constraint is commonly used in
sourcing auctions [Hohner et al., 2003, Sandholm et al., 2006, Sandholm, 2007, 2013] and (2)
increasing competition to boost revenue, as is studied in Roughgarden et al. [2020] (though in
a different setting than ours). Kroer and Sandholm [2015] show that even the vanilla VCG auc-
tion run with bundling constraints can yield significant revenue gains compared to VCG with no
bundling constraints.

Limiting the number of winners SupposeM is a class of mechanisms such that |winM(S)| ≤
n0 for all M ∈ M such that WM is submodular, winner-monotonic, and satisfies the global-
VCG-like property discussed previously. The proofs of all previous theorems go through with
this constraint taken into account, with parameters modified correspondingly. Let φ, γ be defined
as previously.
Theorem 10.2.5. Let |S| ≥ 2 and S0 ∼ p, and letM be a class of mechanisms that sell to at
most n0 bidders. Then, there exists M ∈M such that

E[RevM(S0)] ≥ Ω

(
p2

(2n0)
1+log1/γ (4/p)

)
WM(S).

In practical settings the auction designer might limit the number of bidders that can win a
nonempty bundle of items – and in such cases n0 can potentially be treated as a constant relative
to m and n.

Bundling constraints A bundling is a partition of the set of items {1, . . . ,m}. An allocation α
respects a bundling ϕ if no two items in the same bundle according to ϕ are allocated to different
buyers. For a set of bundlings Φ, the class of Φ-boosted λ-auctions consists of all λ-auctions
satisfying λ(α) ≥ 0 for all α that respects a bundling in Φ and λ(α) = 0 otherwise. Let WΦ(S)
denote the maximum welfare of any allocation that respects a bundling in Φ. In the following
theorem statement, φ(S ′) = 1

n

∑n
i=1 W

Φ(S ′ \ {i}).

196

Theorem 10.2.6. Let Φ be a set of bundlings. Let S be a set of n ≥ 2 bidders with valuations
such that WΦ : 2S → R≥0 is submodular. Let γ = maxS′,i∈ω(S′)

φ(S′\{i})
φ(S′)

. Let m0 be the greatest
number of bundles in any bundling in Φ. LetM be the class of Φ-boosted λ-auctions. Then,

sup
λ∈M

E
S0∼pS

[Revλ(S0)] ≥ Ω

(
p2

(2m0)
1+log1/γ(4/p)

)
WΦ(S).

Proof. At most m0 bidders can win a nonempty bundle of items, so maxS′ |ω(S ′)| ≤ 2m0 by
the same reasoning used to prove Theorem 10.2.5. The arguments used to prove Theorem 10.2.4
yield the desired bound.

General distribution over submarkets Our proof techniques easily generalize to handle any
distribution D over subsets of bidders since the only statistic of the distribution required is the
expected welfare of a random subset of bidders ES0∼DS[WM(S0)]. When bidders participated
independently with probability p, submodularity of the welfare function was required to ensure
that E[WM(S0)] ≥ pWM(S). In the following more general guarantee, which is in terms of
E[WM(S0)], we only need the more general condition of winner monotonicity.
Theorem 10.2.7. Let S be a set of n ≥ 2 bidders with valuations that satisfy winner mono-
tonicity. Let D be a distribution supported on 2S with ES0∼DS[WM(S0)] = µ · WM(S). Let
γ = maxS′,i∈ω(S′)

φ(S′\{i})
φ(S′)

and let k = maxS′ |ω(S ′)|. We have

sup
M∈M

E
S0∼DS

[RevM(S0)] ≥
ηµ

k1+log1/γ(1/ηµ)

(
µ− 2ηµ

2(1− ηµ)

)
·WM(S)

for all 0 ≤ η ≤ 1/2.

Proof. The proof is nearly identical to that of Theorem 10.2.4. The main modification is that
S ′ ⊂ S is heavy if φ(S ′) ≥ ηµ ·WM(S), and A randomizes over mechanisms corresponding to
sets S ′ with this property. Then, ES0∼DS[φ(S0)] ≥ µ

2
WM(S) and so Markov’s inequality yields

Pr(S0 is heavy) ≥ µ/2−η
1−η

. The remainder of the proof is identical.

Versions of Theorems 10.2.5 and Theorems 10.2.6 for general distributions can be similarly
obtained.

10.2.4 How to choose an auction
Computing the mechanism M ∈ M that achieves the revenue guarantee of Theorem 10.2.4
can be accomplished by searching over the set {M1, . . . ,Mℓ} that A randomizes over, but this
would potentially be a highly-inefficient procedure. Moreover, A itself is not computationally-
efficient: determining the heavy sets of bidders, and determining the mechanisms M1, . . . ,Mℓ

that are revenue maximizing for the heavy sets is an exhaustive procedure that would require
enumerating over a potentially exponential number of subsets of S.

A more natural way for the mechanism designer to arrive at a mechanism is to learn from
samples, which ensures that the mechanism designer uses the auction that (nearly) optimizes

197

the expected preserved revenue, which could be significantly higher than what Theorem 10.2.4
guarantees.

We give a learning algorithm that the mechanism designer can use to learn a mechanism
M̃ ∈ M that achieves an expected revenue of nearly supM∈M E[RevM(S0)]. Our algorithm is
similar in spirit to the learning-within-an-instance paradigm of Balcan et al. [2021c]. To describe
the algorithm, we require the structural notion of mechanism delineability introduced by Balcan
et al. [2018d] (discussed in the previous section).
Theorem 10.2.1. LetM be (d, h)-delineable class of mechanisms. A mechanism M̃ ∈M such
that

E[RevM̃(S0)] ≥ Ω
(

p2

k
1+log1/γ (4/p)

)
WM(S)− ε

with probability at least 1 − δ can be computed in NhT + (Nh)O(d) time, where T is the time
required to generate any given hyperplane witnessing delineability of any mechanism inM and
N = O

(d log(dh)
ε2

log(1
δ
)
)
.

Proof. We design a mechanism M̃ such that E[RevM̃(S0)] ≥ supM∈M E[RevM(S0)] − ε with
high probability. The theorem statement then follows from Theorem 10.2.4. Our algorithm is
based on the framework of empirical risk minimization from machine learning. The mechanism
designer samples S1, . . . , SN ⊆ S independently and identically according to distribution D on
2S . (We assume for simplicity that sampling according to D can be done in a computationally
efficient manner. If bidders participate independently with probability p, then the mechanism
designer simply needs to flip N coins of bias p for each of the n bidders in S.) The auction used
will be the one that maximizes empirical revenue M̃ = argmaxM∈M

1
N

∑N
t=1 RevM(St). Balcan

et al. [2018d] show that N = O
(d log(dh)

ε2
log(1

δ
)
)

samples suffice to guarantee that the expected
revenue of M̃ is ε-close to optimal with probability at least 1− δ over the draw of S1, . . . , SN .

We now determine the computational complexity of maximizing empirical revenue. Our
algorithm exploits similar geometric intuition that was used by Balcan et al. [2018d] to derive
the above sample complexity guarantee. A similar approach has been used in other settings as
well [Balcan et al., 2020c, 2021c].

For each St ∈ {S1, . . . , Sn}, letHt denote the set of at most h hyperplanes witnessing (d, h)-
delineability ofM, and let H = ∪tHt, so |H| ≤ Nh. The number of connected components
of Rd \H is at most |H|d ≤ (Nh)d. Each connected component is a convex polyhedron that is
the intersection of at most |H| halfspaces. Representations of these regions as 0/1 constraint-
vectors of length H (a 0 in entry h ∈ H corresponds to one side of h, a 1 corresponds to the
other side) can be computed in poly(|H|d) time using standard techniques [Tóth et al., 2017].
Empirical revenue is linear as a function of θ in each connected component due to delineability,
so the parameter θ that maximizes empirical revenue within a given component can be found by
solving a linear program that involves d variables and at most |H| constraints, which can be done
in poly(|H|, d) time.

Our algorithm has a run-time that is exponential in the number of parameters d required to de-
scribe mechanisms inM. In the full version of the paper, we study a class of sparse λ-auctions
that can be described by a constant number of parameters. By leveraging practically-efficient
routines for winner determination [Sandholm, 2002a, Sandholm and Suri, 2003, Sandholm et al.,

198

2005] (a generalization of the problem of computing welfare-maximizing allocations), we show
how our empirical revenue maximization is computationally tractable for this setting (in partic-
ular, the run-time T of computing the hyperplanes witnessing delineability is in terms of the
run-time of winner determination).

10.2.5 Conclusions and future research
Our work in this section is the first to formally study the problem of preserving revenue in a
shrinking market via a simple and natural model. We gave a sample-based learning algorithm to
design a mechanism that is robust to shrinkage and uncertainty in the market. The crux of our
analysis was a new combinatorial construction we introduced called a winner diagram.

There are several open questions and new interesting research directions that stem from this
study. The most immediate question is to derive tight bounds on revenue loss. There is a gap
between the bound of Theorem 10.2.4 and the (1 − p2)-fraction revenue loss of the simple ex-
ample of a market with competition. Where does the true answer lie? Another interesting, and
seemingly more difficult, setting is the one where the mechanism designer does not know the
distribution D over 2S beforehand. Can he still arrive at an auction that is robust to the shrink-
ing market? If the mechanism designer knows that each bidder participates independently with
probability p, but does not know p, is it still possible to design a robust auction? Finally, we be-
lieve that the combinatorial bidder structure uncovered by our notion of a winner diagram could
have interesting applications to other areas in mechanism design. While our analysis required a
number of assumptions on the set of bidders, it would be interesting to extend the concept of a
winner diagram to prove more general results with weaker assumptions. It would be interesting
to extend our techniques to understand market shrinkage in other settings including objectives
beyond revenue, other auction classes, and unlimited supply.

199

200

Chapter 11

Conclusions and Future Research
Directions

Mechanism design and integer programming have been used to great avail to drive the efficient
operation of various markets for several decades. In this thesis we pushed the boundary of pos-
sibilities at the convergence of mechanism design, integer programming, and machine learning.

There are many remaining open problems in the threads presented so far in this thesis, and
all of those are important directions for future research. In this closing chapter, we focus on
new directions. These directions will directly use the knowledge and tools involved the research
covered in this thesis, spanning the development of new theory to practical implementation.

Side Information and Computation in Mechanism Design
Type space models To further empirically test our proposed approaches, realistic distribu-
tions/generators of side information will be needed. Directly building atop the Combinatorial
Auction Test Suite (CATS) [Leyton-Brown et al., 2000] that is a mainstay of auction design re-
search (some other lesser-studied generators worth looking into include the Spectrum Auction
Test Suite (SATS) [Weiss et al., 2017], the spectrum auction generators in Bichler et al. [2023],
and the distributions for TV advertisement markets in Goetzendorff et al. [2015]) is a promising
start. Such side-information distributions should have direct ties to information an auctioneer
would have access to in real settings: some examples include known appraisal values for items,
known relative spending powers of different bidders, known complementarity/substitutability
structures on the bids, etc. The interdependent values model of Milgrom and Weber [1982]
might provide some guidance here.

Learning sophisticated and accurate type space models from data is also an interesting future
research direction. In our work on improved pricing structures and mechanisms that exploit the
weakest type consistent with the type space model (Chapters 6 and 7), it is critical that an agent’s
true type is contained in the type space. In other words, an agent’s true type must be consistent
with the mechanism designer’s knowledge. There are two challenges to the learning problem that
arises. First, the only examples seen by the learner/mechanism designer are positively-labeled
examples, so appropriate learning-theoretic techniques that deal with positive-only examples
must be ported over [Shvaytser, 1990, Denis, 1998]. Second, the usual notion of classification

201

error is insufficient to judge the merits of a learned type space. That is because a learned type
space that contains the true type space can still be used to run an efficient mechanism in an IC
and IR way, but a learned type space that misses parts of the type space risks IR violations. Here,
the notion of one-sided error introduced by Valiant [1984] (see also Natarajan [1987] and Kalai
et al. [2012]) might be amenable to better capture the learning problem.

One can also interpret the constraints defining agents’ type spaces simply as rules of the
market, whether or not agents’ true types satisfy those constraints. This interpretation could
beget a more practical use of the resulting pricing structures that we developed in this thesis,
since ultimately the mechanism designer might not know, with certainty, too much about true
private types. The resulting design questions involving incentives, efficiency, equilibrium, and
implementation form a compelling research direction.

Side information languages What is the best way to express side information? This analo-
gous question in the context of bid expression spurred a productive line of research on bidding
languages (starting with Sandholm [2002a] and Nisan [2000], see also, e.g., Boutilier and Hoos
[2001]). Can the paradigm of expressive bidding [Sandholm, 2007] be used as an analogy for
a new paradigm, expressive side information, that might enable significant economic improve-
ments? As a first step, a syntactic characterization of side information is needed. In this thesis
we have only dealt with expressions of side information compatible with standard optimization
paradigms like linear programming. How the expression of information affects the resulting
computational tasks is a wide-open research question (owing in part to the fact that the study
of weakest-competitor computation has only been initiated in the past two years by the work
covered in this thesis [Balcan et al., 2023, 2025c, Prasad et al., 2025a,b]).

Iterative combinatorial auctions and nonlinear pricing Market clearing in combinatorial
auctions is a fundamental problem [Bikhchandani and Ostroy, 2002]. It is well known that out-
side of very restricted classes of bidder valuations, (anonymous) linear item pricing is insufficient
to clear the market. Recently, an adaptive iterative combinatorial auction has been proposed [La-
haie and Lubin, 2019] that uses polynomial prices, increasing the expressivity of the pricing
structure as needed (such a procedure could be a candidate to replace the clock phase of the
combinatorial clock auction [Ausubel et al., 2006]). This procedure involves cut generation and
column generation, and a deeper dive into the integer programming techniques called for here is
a fruitful research direction. How can side information guide the design of such procedures?

New Cutting Plane Generation and Selection Techniques
Rank-2 Gomory cuts The standard method of generating Gomory cuts in integer program-
ming solvers for the past several decades works as follows. At a given node of branch-and-cut,
the LP relaxation of the subproblem is solved from which an optimal LP tableau is obtained.
Each row of the tableau gives rise to a Gomory cut that is guaranteed to separate the LP opti-
mum. While the Gomory rounding procedure is more general than the procedure just described,
using the guidance provided by the tableau guarantees separation. Our idea here is to harness
the power of the general rounding procedure directly atop the cuts provided by the tableau. Any

202

choice of multipliers applied to the tableau cuts are guaranteed to produce a cut that separates the
LP optimum. We thus obtain an infinite family of cuts that can be optimized over (either exactly
or with machine learning). Cornuéjols et al. [2003] and Andersen et al. [2005] explore a similar
idea, but they operate directly on the rows of the simplex tableau (which can be thought of as
rank-0 inequalities). Our idea is to operate on the Gomory cuts (rank-1 inequalities) derived from
the simplex tableau, to obtain rank-2 cuts. Fischetti and Lodi [2007] study optimization of rank-1
CG cut multipliers. Chételat and Lodi [2023] also study a similar idea of running optimization
algorithms like gradient descent to tune GMI multipliers.

Dominance relations for lifted cover inequalities In our work on sequence-independent lift-
ing [Prasad et al., 2024] we showed that rethinking cover cut generation routines can be very
effective in practical settings, leading to dramatically smaller search trees than those built by
CPLEX. The norm in all prior research has been to solve (or approximate) NP-hard separation
routines to furnish a single most-violated cover cut. In contrast, in our work, we cheaply generate
many candidate cover cuts based on qualitative criteria, lift them, and check for separation only
before adding the cut. This approach turns out to work well in practice, and is more aligned with
the analogous practice for Gomory cuts [Balas et al., 1996b].

Our approach raises a fundamental question: how can one determine the best set of minimal
covers to lift? When does one lifted cover cut dominate another, and can this domination be
determined from the covers themselves (before lifting)? A methodical answer to this question
grounded in theory would likely directly translate to practical gains in the implementations in
our work in Chapter 3 [Prasad et al., 2024].

Efficient algorithms and online learning for cut configuration Development of the algorith-
mic aspects of learning to cut remains an important open direction. Empirical risk minimization
(ERM) algorithms enjoy the sample complexity guarantees established in our work, but are too
computationally expensive to be relevant in practice. And while there is a growing corpus of at-
tempts to make machine learning work for cutting plane configuration, none of those have been
integrated yet into integer programming solvers in a meaningful way. (Solvers like Gurobi offer
parameter tuning capabilities, but these only operate on the predefined parameters that the solver
allows the user to configure.) Much work remains to truly enhance the decisions throughout
branch-and-cut tree search in a fine-grained way using machine learning.

One approach is to shift to an online-learning setting, rather than the distributional setting
that has been studied in this thesis, since no IID assumptions about the data-generating process
are needed. Many tools for analyzing data-driven algorithm design in the online learning setting
have been developed [Balcan et al., 2018b, 2020b, 2021b, Sharma et al., 2020], and application
of those to branch-and-cut parameter tuning—with the end goal of practical gains over default
solver settings—is a ripe direction for future research.

Large-Scale Integer Programming and Applications to Mechanism Design
Branch-and-price is an algorithm for solving huge integer programs that are too large to be repre-
sented explicitly in memory (which is often the case for integer programs arising in modern ap-

203

plications). Branch-and-price solvers have not been commercialized nor have they achieved the
same widespread use as branch-and-cut integer programming solvers (despite the many success-
ful developments of custom branch-and-price approaches for kidney exchange [Abraham et al.,
2007], vehicle routing, etc.) largely due to the optimization expertise required to formulate the
important problem-specific components of the algorithm. (How should one formulate and solve
the pricing problem? How should one branch? How are cuts generated?) We envision market
design as a fertile application area that is ripe for innovations in branch-and-price methods. For
example, some of the more difficult design choices of branch-and-price can be guided by what is
economically meaningful—and some can even be delegated to market participants (for example,
an otherwise intractable pricing subproblem might be solvable by asking an agent to make some
decision). Finally, machine learning for branch-and-price configuration is a promising research
area that is in its infancy [Morabit et al., 2021, Chi et al., 2022].

Generative AI and Mechanism Design
Large language models (LLMs) present new opportunities for the representation and solving of
the large-scale combinatorial allocation problems inherent to most marketplaces. A compelling
research agenda here is the principled integration of LLMs to improve the economic performance
of mechanisms without compromising any integrity in the form of fairness, incentives, and so
on. The research on mechanism design with side information covered in this thesis already takes
an important step in this direction, but there are several other challenges in the deployment of
market design solutions that LLMs can aid with. A growing body of work has started to explore
and pave out this brand new research area [Dütting et al., 2024, Hajiaghayi et al., 2024, Soumalias
et al., 2025, Huang et al., 2025].

One of the most important design decisions in any combinatorial market is how to tame
communication costs via a tractable language for type/preference expression. LLMs present sig-
nificant opportunities for innovation along this vein by expanding the possibilities for what kinds
of valuations a market participant can express concisely. An LLM that has been fine-tuned based
on an agent’s preferences can furthermore serve as a bidder on the agent’s behalf. Prompting as
a bidding language is a promising paradigm here: the agent could describe their high level intent
and bidding goal via prompts to the LLM and allow it to choose what to bid on and how to bid.

Critical to these directions is the development of new theory and new models. The Internet
boom over two decades ago in-part lead to the development of elegant and far-reaching new
concepts in algorithmic game theory and computational mechanism design that in turn directly
influenced the design of Internet-based marketplaces that are prevalent today. Generative AI
yields such an opportunity as well. Overall, there is massive untapped potential to build and
nurture new and improved economic systems that take advantage of the deep interaction between
mechanism design and discrete optimization. Rapid advancements in AI will bolster this vision.
Building principled pipelines from data to optimization to market design and back will require
an interdisciplinary approach drawing from artificial intelligence, economics, and operations
research. This thesis represents my first foray towards those goals.

■

204

Appendix A

Omitted Details About Lifting in Chapter 3

Counterexample to Claim of Gu, Nemhauser, and Savelsbergh
Gu, Nemhauser, and Savelsbergh [2000] remark that if µ1 − λ ≥ ρ1, a large family of super-
additive lifting functions can be constructed by considering any nondecreasing function w(x) of
x ∈ [0, ρ1] with w(x) +w(ρ1 − x) = 1. Consider the class of logistic functions centered at ρ1/2
of the form

wk(x) =
1

1 + e−k(x−ρ1/2)

where k ≥ 0. Each wk is nondecreasing on [0, ρ1], and satisfies wk(x) + wk(ρ1 − x) = 1 for all
x. In the following example, we show that using w0.9 for sequence-independent lifting can yield
invalid cuts. Moreover, the lifting function gw0.9 is not superadditive.

maximize 112x1 + 108x2 + 107x3 + 106x4 + 102x5 + 84x6 + 82x7

subject to 112x1 + 108x2 + 107x3 + 106x4 + 102x5 + 84x6 + 82x7 ≤ 268
x ∈ {0, 1}7

An optimal solution is given by x∗ = (0, 0, 0, 0, 1, 1, 1), which has an objective value of 268,
satisfying the single knapsack constraint with equality. The set C = {2, 3, 4} is a minimal cover,
and the corresponding minimal cover inequality is x2 + x3 + x4 ≤ 2. We compute the relevant
parameters needed for sequence-independent lifting. We have µ0 = 0, µ1 = 108, µ2 = 215, µ3 =
321, λ = 53, and ρ0 = 53, ρ1 = 52, ρ2 = 51. We have that µ1 − λ ≥ ρ1 is satisfied. Thus, the
lifting function gw (truncated to the range [0, 213]) is given by

gw(z) =


0 0 < z ≤ 55

1− w(107− z) 55 < z ≤ 107

1 107 < z ≤ 162

2− w(213− z) 162 < z ≤ 213.

Using gw0.9 yields the lifted cover inequality

x1 + x2 + x3 + x4 + 0.99x5 + 0.93x6 + 0.71x7 ≤ 2.

205

But 0.99 + 0.93 + 0.71 = 2.63 > 2, so x∗ violates this inequality, so the lifted cover inequality
is invalid for our problem. Furthermore, gw0.9 is not superadditive. We have

gw0.9(82) + gw0.9(82) = 0.71 + 0.71 > gw0.9(82 + 82) ≈ 1.00.

One need not look at logistic functions to derive this counterexample. The step function

w(x) =


0 x < ρ1/2

1/2 x = ρ1/2

1 x > ρ1/2

disproves the claim as well (in that gw is not superadditive, and results in an invalid cut in the
above example).

Omitted Proofs

Proof of Theorem 3.1.1
The proof that gk is superadditive closely follows the proof that g1/ρ1 is superadditive by Gu et al.
[2000] (Lemma 1 in their paper), with a couple key modifications. As done in Gu et al. [2000],
we will establish superadditivity of a function that is defined slightly more generally.

Given v1 > 0, ui ≥ 0, ui ≥ ui+1, i = 1, 2, . . . , vi ≥ 0, vi ≥ vi+1, i = 1, 2, . . . such that
ui + vi > 0 for all i, let M0 = 0 and Mh =

∑h
i=1(ui + vi) for h = 1, 2, . . . ,∞. Define

g̃k(z) =


0 z = 0

h Mh < z ≤Mh + uh+1, h = 0, 1, . . .

h+ 1− wk(Mh+1 − z) Mh + uh+1 < z ≤Mh+1, h = 0, 1, . . .

where wk(x) = kx+ 1−kv1
2

.
The superadditive lifting function gk is recovered by letting ui = ai−ρi−1 for i ∈ {1, . . . , t},

vi = ρi for i ∈ {1, . . . , t− 1}. This yields Mh = µh − λ+ ρh and Mh + uh+1 = µh+1 − λ (see
Gu et al. Gu et al. [2000] for further details).
Lemma A.0.1. Let k ∈ [0, 1/v1]. If u1 ≥ v1, the function g̃k is superadditive on [0,∞).

Proof. We prove that max{g̃(z1)+ g̃(z2)− g̃(z1+z2) : z1, z2 ∈ [0,∞)} ≤ 0, which is equivalent
to superadditivity. We break the analysis into cases as done in Gu et al. [2000].
Case 1: Mh1 + uh1+1 < z1 ≤ Mh1+1 and Mh2 + uh2+1 < z2 ≤ Mh2+1. Then, as in Gu et al.
[2000], z1 + z2 ≥ Mh1+h2 + uh1+h2+1. The first subcase of Gu et al. [2000] (Case 1.1) is
z1+z2 ≤Mh1+h2+1, that is, z1+z2 lies on a “sloped” segment of g̃. We show that the assumption
u1 ≥ v1 rules this case out, that is, z1 + z2 > Mh1+h2+1.
Proof that z1 + z2 > Mh1+h2+1: First, suppose h1 = 0. We have

z1 + z2 > u1 +Mh2 + uh2+1

≥ vh2+1 +Mh2 + uh2+1 (since u1 ≥ v1 ≥ vh2+1)

206

= Mh2+1,

as desired. The case where h2 = 0 is symmetric. Thus, suppose h1, h2 ≥ 1, and without loss of
generality let h1 ≤ h2 (the case where h2 ≤ h1 is symmetric). We have

z1 + z2 > Mh1 + uh1+1 +Mh2 + uh2+1

=

h1∑
i=1

(ui + vi) + uh1+1 +

h2∑
i=1

(ui + vi) + uh2+1

= (u1 + v1) +

h1∑
i=2

(ui + vi) + uh1+1 +

h2∑
i=1

(ui + vi) + uh2+1

≥ (u1 + v1) +

h1+h2−1∑
i=h2+1

(ui + vi) + uh1+1 +

h2∑
i=1

(ui + vi) + uh2+1

= Mh1+h2−1 + u1 + v1 + uh1+1 + uh2+1

Now, uh1+1 ≥ uh1+h2+1 and as h1, h2 ≥ 1, uh2+1 ≥ uh1+h2 . Furthermore, u1 ≥ v1 ≥ vh1+h2 ≥
vh1+h2+1. Therefore, the right-hand-side is at least

Mh1+h2−1 + (uh1+h2 + vh1+h2) + (uh1+h2+1 + vh1+h2+1) = Mh1+h2+1,

as desired. This completes the proof that under Case 1, z1 + z2 > Mh1+h2+1. We now proceed
with the casework under Case 1, starting our numbering from Case 1.2 so that the labeling of the
cases coincides with Gu et al. [2000].
Case 1.2: Mh1+h2+1 < z1 + z2 ≤Mh1+h2+1 + uh1+h2+2. Then

g̃(z1) + g̃(z2)− g̃(z1 + z2)

=

(
h1 + 1− k(Mh1+1 − z1)−

1− kv1
2

)
+

(
h2 + 1− k(Mh2+1 − z2)−

1− kv1
2

)
− (h1 + h2 + 1)

= 1− k(Mh1+1 +Mh2+1 − z1 − z2)− (1− kv1)

≤ 1− k(Mh1+1 +Mh2+1 −Mh1+h2+1 − uh1+h2+2)− (1− kv1)

= 1− k
(
(u1 + v1) +

h1+1∑
i=2

(ui + vi) +

h2+1∑
i=1

(ui + vi)−
h1+h2+1∑

i=1

(ui + vi)− uh1+h2+2

)
− (1− kv1)

= 1− k(u1 + v1 − uh1+h2+2)− k

h1+1∑
i=2

((ui + vi)− (ui+h2 + vi+h2))− (1− kv1)

= −k (u1 − uh1+h2+2)︸ ︷︷ ︸
≥0

−k
h1+1∑
i=2

((ui + vi)− (ui+h2 + vi+h2))︸ ︷︷ ︸
≥0

≤ 0.

Case 1.3: Mh1+h2+1 + uh1+h2+2 < z1 + z2 ≤Mh1+h2+2. Then

g̃(z1) + g̃(z2)− g̃(z1 + z2)

207

=

(
h1 + 1− k(Mh1+1 − z1)−

1− kv1
2

)
+

(
h2 + 1− k(Mh2+1 − z2)−

1− kv1
2

)
−
(
(h1 + h2 + 2)− k(Mh1+h2+2 − z1 − z2)−

1− kv1
2

)
= −k(Mh1+1 +Mh2+1 −Mh1+h2+2)−

1− kv1
2

≤ −k(Mh1+1 +Mh2+1 −Mh1+h2+2) (since k ≤ 1/v1)

≤ 0.

The remaining cases (1.4, 2, 3.1 - 3.2 from Gu et al. [2000]) and their proofs follow Gu et al.
[2000] verbatim, so we omit them. This completes the proof that g̃ is superadditive.

Now, the proofs that g is superadditive, maximal, and undominated are identical to those
in Gu et al. [2000].

We also show here that the condition µ1−λ ≥ ρ1 is necessary and sufficient for g0 (PC lifting)
to be superadditive. Theorem 3.1.1 shows that the condition is sufficient. To show necessity,
suppose µ1 − λ < ρ1. Let ε be sufficiently small so that µ1 − λ+ 2ε < ρ1. We have

g0(µ1 − λ+ ε) = 1/2

and as 2(µ1 − λ+ ε) ∈ (µ1 − λ, µ1 − λ+ ρ1),

g0(2(µ1 − λ+ ε)) = 1/2,

so
g0(2(µ1 − λ+ ε)) < 2g0(µ1 − λ+ ε)

violating superadditivity.

Proof of Proposition 3.1.4
We prove Proposition 3.1.4, which states that for any ε > 0 and any t ∈ N there exists a
knapsack constraint a⊤x ≤ b with a minimal cover C of size t such that PC lifting yields∑

j∈C xj+
∑

j /∈C
1
2
xj ≤ |C|−1 and GNS lifting is dominated by

∑
j∈C xj+

∑
j /∈C εxj ≤ |C|−1.

Proof. Let a1 ≥ · · · ≥ at and let b be such that a1 + · · · + at > b and a1 + · · · + at−1 ≤ b. Let
λ′ = a1 + · · ·+ at− b. Furthermore, choose a1, . . . , at, b so that a1− λ′ ≥ a2− a1 + λ′ > 0. Let
M ≥ 1

(a2−a1+λ′)ε
and consider the knapsack constraint

M(a1x1 + · · ·+ atxt) + (1 +M(a1 − λ′))(xt+1 + · · ·+ xn) ≤Mb.

C = {1, . . . , t} is clearly a minimal cover with µ1 = Ma1, λ = Mλ′ and ρ1 = M(a2− a1+λ′),
and by the choice of a1, . . . , at, µ1 − λ = M(a1 − λ′) ≥ M(a2 − a1 + λ′) = ρ1. Hence, PC
lifting can be used to yield a valid lifted cut. As 1 + M(a1 − λ′) = 1 + (µ1 − λ), we have
g0(1 +M(a1 − λ′)) = 1

2
and

g1/ρ1(1 +M(a1 − λ′)) = 1− µ1 − λ+ ρ1 − (1 + µ1 − λ)

ρ1
=

1

ρ1
=

1

M(a2 − a1 + λ′)
≤ ε.

208

Proof of claim in Theorem 3.1.8

In the proof of Theorem 3.1.8 we critically used the claim that given Q ∈ Q(J), |Q| ≥ 3, with
hj such that aj ∈ Shj

, ∑
j∈Q

aj > µ∑
j∈Q hj−⌊|Q|/2⌋ − λ.

This allowed us to ensure that the constraint induced by every such Q was satisfied by the point
(1/2, . . . , 1/2). We prove this claim here.

Proof. We use the quantities uh, vh,Mh defined in Appendix A. We break the proof into two
cases. We will use the observation that uh ≥ vh for any h such that ρh > 0. This is because for
such h, uh = u1 = a1 − λ, and so uh = u1 ≥ v1 ≥ vh.
Case 1: |Q| = 2ℓ is even. Let (without loss of generality) Q = {a1, . . . , a2ℓ}, let hj be such that
aj ∈ Shj

, and let H = h1 + · · ·+ h2ℓ. We have

2ℓ∑
j=1

aj >
2ℓ∑
j=1

µhj
− λ =

2ℓ∑
j=1

Mhj−1 + uhj

≥MH−2ℓ +
2ℓ∑
j=1

uhj

=
H−2ℓ∑
i=1

(ui + vi) +
2ℓ∑
j=1

uhj

≥
H−2ℓ∑
i=1

(ui + vi) +
2ℓ∑

j=ℓ+1

(uhj
+ vhj

)

≥
H−2ℓ∑
i=1

(ui + vi) +
ℓ∑

j=1

(uH−2ℓ+j + vH−2ℓ+j)

=
H−ℓ∑
i=1

(ui + vi)

= MH−ℓ

= µH−ℓ − λ+ ρH−ℓ

≥ µH−ℓ − λ,

as desired.
Case 2: |Q| = 2ℓ + 1 is odd. Let Q = {a1, . . . , a2ℓ+1}, let hj be such that aj ∈ Shj

, and let
H = h1 + · · ·+ h2ℓ+1. We have

2ℓ+1∑
j=1

aj >

2ℓ+1∑
j=1

µhj
− λ

209

=
2ℓ+1∑
j=1

Mhj−1 + uhj

≥MH−(2ℓ+1) +
2ℓ+1∑
j=1

uhj

=

H−(2ℓ+1)∑
i=1

(ui + vi) +
2ℓ+1∑
j=1

uhj

≥
H−(2ℓ+1)∑

i=1

(ui + vi) +
2ℓ∑

j=ℓ+1

(uhj
+ vhj

) + uh2ℓ+1

≥
H−(2ℓ+1)∑

i=1

(ui + vi) +
ℓ∑

j=1

(uH−(2ℓ+1)+j + vH−(2ℓ+1)+j) + uH−(2ℓ+1)+(ℓ+1)

=
H−ℓ−1∑
i=1

(ui + vi) + uH−ℓ

= MH−ℓ−1 + uH−ℓ

= µH−ℓ − λ,

as desired.

210

Appendix B

Omitted Details About Plots in Section 4.5

The version of the facility location problem we study involves a set of locations J and a set of
clients C. Facilities are to be constructed at some subset of the locations, and the clients in C
are served by these facilities. Each location j ∈ J has a cost fj of being the site of a facility,
and a cost sc,j of serving client c ∈ C. Finally, each location j has a capacity κj which is a limit
on the number of clients j can serve. The goal of the facility location problem is to arrive at a
feasible set of locations for facilities and a feasible assignment of clients to these locations that
minimizes the overall cost incurred.

The facility location problem can be formulated as the following 0, 1 IP:

minimize
∑
j∈J

fjxj +
∑
j∈J

∑
c∈C

sc,jyc,j

subject to
∑
j∈J

yc,j = 1 ∀ c ∈ C∑
c∈C

yc,j ≤ κjxj ∀ j ∈ J

yc,j ∈ {0, 1} ∀ c ∈ C, j ∈ J
xj ∈ {0, 1} ∀ j ∈ J

We consider the following two distributions over facility location IPs.

First distribution Facility location IPs are generated by perturbing the costs and capacities of
a base facility location IP. We generated the base IP with 40 locations and 40 clients by choosing
the location costs and client-location costs uniformly at random from [0, 100] and the capacities
uniformly at random from {0, . . . , 39}. To sample from the distribution, we perturb this base IP
by adding independent Gaussian noise with mean 0 and standard deviation 10 to the cost of each
location, the cost of each client-location pair, and the capacity of each location.

Second distribution Facility location IPs are generated by placing 80 evenly-spaced locations
along the line segment connecting the points (0, 1/2) and (1, 1/2) in the Cartesian plane. The
location costs are all uniformly set to 1. Then, 80 clients are placed uniformly at random in the
unit square [0, 1]2. The cost sc,j of serving client c from location j is the distance between j and
c. Location capacities are chosen uniformly at random from {0, . . . , 43}.

211

In our experiments, we add five cuts at the root of the B&C tree. These five cuts come from
the set of Chvátal-Gomory and Gomory mixed integer cuts derived from the optimal simplex
tableau of the LP relaxation. The five cuts added are chosen to maximize a weighting of cutting-
plane scores:

µ · score1 + (1− µ) · score2. (B.1)

score1 is the parallelism of a cut, which intuitively measures the angle formed by the objec-
tive vector and the normal vector of the cutting plane—promoting cutting planes that are nearly
parallel with the objective direction. score2 is the efficacy, or depth, of a cut, which measures
the perpendicular distance from the LP optimum to the cut—promoting cutting planes that are
“deeper”, as measured with respect to the LP optimum. More details about these scoring rules
can be found in Balcan et al. [2021d] and references therein. Given an IP, for each µ ∈ [0, 1]
(discretized at steps of 0.01) we choose the five cuts among the set of Chvátal-Gomory and Go-
mory mixed integer cuts that maximize (B.1). Figures 4.5a and 4.5b display the average tree size
over 1000 samples drawn from the respective distribution for each value of µ used to choose cuts
at the root. We ran our experiments in C++ using the IBM ILOG CPLEX C Callable Library,
version 20.1.0, with default cut generation disabled.

212

Bibliography

Vineet Abhishek and Bruce Hajek. Efficiency loss in revenue optimal auctions. In 49th IEEE
Conference on Decision and Control (CDC). IEEE, 2010. 5, 5

David Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter exchange
markets: Enabling nationwide kidney exchanges. In ACM Conference on Electronic Com-
merce (EC), pages 295–304, 2007. 11

Tobias Achterberg. Constraint integer programming. 2007. 4.4, 4.4.1

Tobias Achterberg and Roland Wunderling. Mixed Integer Programming: Analyzing 12 Years of
Progress, pages 449–481. Springer Berlin Heidelberg, 2013. 4.5

Gagan Aggarwal, Gagan Goel, and Aranyak Mehta. Efficiency of (revenue-)optimal mecha-
nisms. In ACM Conference on Electronic Commerce (EC), 2009. 5

Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan. Learning-
augmented mechanism design: Leveraging predictions for facility location. In ACM Confer-
ence on Economics and Computation (EC), 2022. 5, 5

Mohammad Akbarpour, Scott Duke Kominers, Shengwu Li, and Paul R Milgrom. Investment
incentives in near-optimal mechanisms. In ACM Conference on Economics and Computation
(EC), pages 26–26, 2021. 5.6

Saeed Alaei, Azarakhsh Malekian, and Aravind Srinivasan. On random sampling auctions for
digital goods. In ACM Conference on Electronic Commerce (EC), pages 187–196, 2009. 10.1

Nicole P Aliloupour. The impact of technology on the entertainment distribution market: The
effects of Netflix and Hulu on cable revenue. 2016. 10.2, 10.2

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.
4, 4.2

Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Reduce-and-split cuts: Improving the per-
formance of mixed-integer Gomory cuts. Management Science, 51(11):1720–1732, 2005. 11

Elliot Anshelevich, Koushik Kar, and Shreyas Sekar. Pricing to maximize revenue and welfare
simultaneously in large markets. In International Conference on Web and Internet Economics
(WINE). Springer, 2016. 5, 5

Martin Anthony and Peter Bartlett. Neural network learning: Theoretical foundations. Cam-
bridge University Press, 1999. 4.1, 4.4, 4.5.3, 10.1.1, 10.1.2

Mark Armstrong and John Vickers. Competitive price discrimination. RAND Journal of Eco-

213

nomics, pages 579–605, 2001. 9.1

Robert J Aumann. Markets with a continuum of traders. Econometrica, 1964. 10.1.2

Lawrence Ausubel and Oleg Baranov. A practical guide to the combinatorial clock auction.
Economic Journal, 127(605), 2017. 5.2, 8.3

Lawrence Ausubel and Oleg Baranov. Core-selecting auctions with incomplete information.
International Journal of Game Theory, 49(1):251–273, 2020. 6, 6.6

Lawrence Ausubel and Oleg Baranov. The VCG mechanism, the core, and assignment stages in
auctions. Working paper, 2023. 6, 6.5.1

Lawrence Ausubel and Peter Cramton. Auction design for wind rights. Report to Bureau of
Ocean Energy Management, Regulation and Enforcement, 1, 2011. 6

Lawrence Ausubel and Paul Milgrom. Ascending auctions with package bidding. Frontiers of
Theoretical Economics, 1, 2002. No. 1, Article 1. 6

Lawrence Ausubel and Paul Milgrom. The lovely but lonely Vickrey auction. In Peter Cramton,
Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions, chapter 1. MIT Press,
2006. 5, 5.1.1, 6

Lawrence Ausubel, Peter Cramton, and Paul Milgrom. The clock-proxy auction: A practical
combinatorial auction design. In Combinatorial Auctions, chapter 5. MIT Press, 2006. 11

Lawrence Ausubel, Christina Aperjis, and Oleg Baranov. Market design and the FCC incentive
auction. Presentation at the NBER Market Design Meeting, 2017. 6, 6.5.1

Moshe Babaioff, Yannai A Gonczarowski, and Noam Nisan. The menu-size complexity of rev-
enue approximation. In ACM SIGACT Symposium on Theory of Computing (STOC), pages
869–877, 2017. 9.1

Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S Matthew Weinberg. A simple and
approximately optimal mechanism for an additive buyer. Journal of the ACM (JACM), 67(4):
1–40, 2020. 5

Adib Bagh and Hemant K Bhargava. How to price discriminate when tariff size matters. Mar-
keting Science, 32(1):111–126, 2013. 9.1

Patrick Bajari and Jungwon Yeo. Auction design and tacit collusion in FCC spectrum auctions.
Information Economics and Policy, 21(2):90–100, 2009. 7, 7.1.2

Egon Balas. Facets of the knapsack polytope. Mathematical programming, 8(1):146–164, 1975.
3, 1

Egon Balas and Eitan Zemel. Facets of the knapsack polytope from minimal covers. SIAM
Journal on Applied Mathematics, 34(1):119–148, 1978. 3.1.2, 3.1.7, 3.1.2

Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science, 42(9):1229–1246, 1996a. 4.4, 4.4.1

Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N Natraj. Gomory cuts revisited. Opera-
tions Research Letters, 19(1):1–9, 1996b. 1, 4.5, 4.5, 11

Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond Worst
Case Analysis of Algorithms. Cambridge University Press, 2020. 4.2, 5, 5.3.1, 5.3.2

214

Maria-Florina Balcan and Hedyeh Beyhaghi. New guarantees for learning revenue maximizing
menus of lotteries and two-part tariffs. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. 9.1

Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances
in Neural Information Processing Systems (NeurIPS), 34:14782–14794, 2021. 4.2

Maria Florina Balcan and Dravyansh Sharma. Learning accurate and interpretable decision trees.
In Conference on Uncertainty in Artificial Intelligence (UAI), 2024. 4.2

Maria-Florina Balcan, Avrim Blum, Jason D Hartline, and Yishay Mansour. Mechanism design
via machine learning. In IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE, 2005. 1, 5, 5, 5, 5.1, 8.3.1, 10.1, 10.1, 10.1.5

Maria-Florina Balcan, Nikhil Devanur, Jason D Hartline, and Kunal Talwar. Random sampling
auctions for limited supply. 2007. Technical report, Carnegie Mellon University. 10.1

Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item pricing for revenue maximiza-
tion. In ACM Conference on Electronic Commerce (EC), 2008. 5, 10.1

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
mechanism design. Advances in Neural Information Processing Systems (NeurIPS), 29, 2016.
1

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In Conference
on Learning Theory (COLT), 2017. 4.2, 4.4.1

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning (ICML), 2018a. 2, 4.2, 4.4, 4.4.1, 4.4.1,
4.4.3, 4.4.3, 4.4.5

Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm
design, online learning, and private optimization. In Symposium on Foundations of Computer
Science (FOCS), pages 603–614. IEEE, 2018b. 11

Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
lloyd’s families. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018c.
4.2

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample com-
plexity for multi-item profit maximization. In ACM Conference on Economics and Computa-
tion (EC), 2018d. 1, 5, 5, 5, 9, 9.1, 9.1, 9.2.2, 9.3, 9.3.1, 10.1, 10.1.1, 10.1.1, 10.1.1, 10.1.3,
10.1.5, 10.2, 10.2.1, 10.2.4, 10.2.4

Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In International Con-
ference on Learning Representations (ICLR), 2020a. 4.2

Maria-Florina Balcan, Travis Dick, and Wesley Pegden. Semi-bandit optimization in the dis-
persed setting. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 909–918.
PMLR, 2020b. 11

Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Efficient algorithms for learn-
ing revenue-maximizing two-part tariffs. In International Joint Conference on Artificial Intel-

215

ligence (IJCAI), 2020c. 5, 10.1.4, 10.2.4

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In ACM Symposium on Theory of Computing
(STOC), 2021a. 4.2, 4.3, 4.3.1, 4.3.1, 4.3.2, 4.3.4, 4.3.4, 4.3.4, 4.4.3, 4.4.3, 4.5.3, 4.5.4

Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. Learning-to-
learn non-convex piecewise-lipschitz functions. Advances in Neural Information Processing
Systems (NeurIPS), 34:15056–15069, 2021b. 11

Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Learning within an instance for
designing high-revenue combinatorial auctions. In International Joint Conference on Artificial
Intelligence (IJCAI), 2021c. 5.1, 8.3.1, 8.3.2, 10.2.1, 10.2.1, 10.2.4, 10.2.4

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample com-
plexity of tree search configuration: Cutting planes and beyond. In Conference on Neural
Information Processing Systems (NeurIPS), 2021d. 3.3, 4.2.1, 4.4, 4.4.1, 4.4.4, 4.4.4, 4.4.5,
4.4.6, 4.5, 4.5.3, B

Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Maximizing revenue under
market shrinkage and market uncertainty. In Conference on Neural Information Processing
Systems (NeurIPS), 2022a. 8.3.2

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Improved sam-
ple complexity bounds for branch-and-cut. In International Conference on Principles and
Practice of Constraint Programming (CP), 2022b. 3.2, 3.2, 3.3, 4.2.1

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal-
ysis of branch-and-cut and the learnability of Gomory mixed integer cuts. In Conference on
Neural Information Processing Systems (NeurIPS), 2022c. 3.3, 4.2.1

Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Bicriteria multidimensional
mechanism design with side information. In Conference on Neural Information Processing
Systems (NeurIPS), 2023. 5, 5, 6, 6, 6, 6.1, 6.1, 6.2, 6.2, 6.4, 6.4.2, 6.4.2, 6.6, 7, 7, 7.1.3, 8.1,
8.2, 8.2.2, 8.2.1, 8.2.3, 8.4, 11

Maria-Florina Balcan, Christopher Seiler, and Dravyansh Sharma. Accelerating ERM for data-
driven algorithm design using output-sensitive techniques. Advances in Neural Information
Processing Systems (NeurIPS), 37:72648–72687, 2024. 9.1

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Algorithm configuration for
structured Pfaffian settings. Transactions on Machine Learning Research (TMLR), 2025a.
ISSN 2835-8856. 4.2.1

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Sample complexity of
data-driven tuning of model hyperparameters in neural networks with structured parameter-
dependent dual function. arXiv preprint arXiv:2501.13734, 2025b. 4.2.1

Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Increasing revenue in efficient
combinatorial auctions by learning to generate artificial competition. In AAAI Conference on
Artificial Intelligence (AAAI), volume 39, pages 13572–13580, 2025c. 7, 11

216

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization guarantees for
multi-item profit maximization: Pricing, auctions, and randomized mechanisms. Operations
Research, 73(2):648–663, 2025d. 8.3.1, 8.3.1, 8.3.2

Sandeep Baliga and Rakesh Vohra. Market research and market design. Advances in theoretical
Economics, 3(1), 2003. 5.1, 8.3.1

Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof scheduling with predictions. In
Innovations in Theoretical Computer Science (ITCS), 2023. 5, 5

Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Mechanism design with predictions: An anno-
tated reading list. ACM SIGecom Exchanges, 21(1):54–57, 2024a. 6.6

Eric Balkanski, Vasilis Gkatzelis, Xizhi Tan, and Cherlin Zhu. Online mechanism design with
predictions. In ACM Conference on Economics and Computation (EC), pages 1184–1184,
2024b. 5

Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2022. 5, 5

Siddharth Barman and Federico Echenique. The Edgeworth conjecture with small coalitions and
approximate equilibria in large economies. In ACM Conference on Economics and Computa-
tion (EC), pages 765–766, 2020. 10.1.2

Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical
linear algebra. In Conference on Learning Theory (COLT), pages 2013–2040. PMLR, 2022.
4.2

Eleni Batziou, Martin Bichler, and Maximilian Fichtl. Core-stability in assignment markets with
financially constrained buyers. In ACM Conference on Economics and Computation (EC),
pages 473–474, 2022. 6

Berkay Becu, Santanu S Dey, Feng Qiu, and Alinson S Xavier. Approximating the Gomory
mixed-integer cut closure using historical data. arXiv preprint arXiv:2411.15090, 2024. 4.2.1

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79:151–175, 2010. 8.3.1

Daniel Berend and Tamir Tassa. Improved bounds on Bell numbers and on moments of sums of
random variables. Probability and Mathematical Statistics, 2010. 10.1.3

Dirk Bergemann and Stephen Morris. Robust mechanism design. Econometrica, pages 1771–
1813, 2005. 5.6

Martin Bichler and Jacob K Goeree. Handbook of spectrum auction design. Cambridge Univer-
sity Press, 2017. 5

Martin Bichler and Stefan Waldherr. Core and pricing equilibria in combinatorial exchanges.
Economics Letters, 157:145–147, 2017. 6

Martin Bichler and Stefan Waldherr. Core pricing in combinatorial exchanges with financially
constrained buyers: Computational hardness and algorithmic solutions. Operations Research,

217

70(1):241–264, 2022. 6

Martin Bichler, Pasha Shabalin, and Jürgen Wolf. Do core-selecting combinatorial clock auc-
tions always lead to high efficiency? An experimental analysis of spectrum auction designs.
Experimental Economics, 16:511–545, 2013. 6

Martin Bichler, Vladimir Fux, and Jacob K Goeree. Designing combinatorial exchanges for the
reallocation of resource rights. Proceedings of the National Academy of Sciences, 116(3):
786–791, 2019. 5.6

Martin Bichler, Paul Milgrom, and Gregor Schwarz. Taming the communication and computa-
tion complexity of combinatorial auctions: the FUEL bid language. Management Science, 69
(4):2217–2238, 2023. 6.6, 11

Sushil Bikhchandani. Information acquisition and full surplus extraction. Journal of Economic
Theory, 145(6):2282–2308, 2010. 8

Sushil Bikhchandani and Joseph M. Ostroy. The package assignment model. Journal of Eco-
nomic Theory, 107:377–406, 2002. 6, 6.4.1, 6.4.2, 6.4.2, 6.6, 11

Sushil Bikhchandani, Sven de Vries, James Schummer, and Rakesh V. Vohra. Linear program-
ming and Vickrey auctions, 2001. Draft. 6.4.1

Robert Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. MIP: Theory
and practice—closing the gap. In IFIP Conference on System Modeling and Optimization,
pages 19–49. Springer, 1999. 1, 4.5

Tilman Börgers. An introduction to the theory of mechanism design. Oxford University Press,
USA, 2015. 5.1.1

Vitor Bosshard, Benedikt Bünz, Benjamin Lubin, and Sven Seuken. Computing Bayes-Nash
equilibria in combinatorial auctions with continuous value and action spaces. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 119–127, 2017. 6

Craig Boutilier. Solving concisely expressed combinatorial auction problems. In National Con-
ference on Artificial Intelligence (AAAI), pages 359–366, Edmonton, Canada, 2002. 6.6

Craig Boutilier and Holger Hoos. Bidding languages for combinatorial auctions. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 1211–1217, Seattle, WA, 2001. 6.6,
11

Craig Boutilier, Martin Mladenov, and Guy Tennenholtz. Recommender ecosystems: A mecha-
nism design perspective on holistic modeling and optimization. In AAAI Conference on Arti-
ficial Intelligence (AAAI), volume 38, pages 22575–22583, 2024. 7

Eric Budish, Peter Cramton, Albert S Kyle, Jeongmin Lee, and David Malec. Flow trading.
Technical report, National Bureau of Economic Research, 2023. 7

Jeremy Bulow and Paul Klemperer. Auctions versus negotiations. The American Economic
Review, 1996. 5, 8

Benedikt Bünz, Sven Seuken, and Benjamin Lubin. A faster core constraint generation algorithm
for combinatorial auctions. In AAAI Conference on Artificial Intelligence (AAAI), volume 29,
2015. 6, 6.1

218

Benedikt Bünz, Benjamin Lubin, and Sven Seuken. Designing core-selecting payment rules: A
computational search approach. Information Systems Research, 33(4):1157–1173, 2022. 6,
6.1, 6.5.2, 6.6

Ioannis Caragiannis and Georgios Kalantzis. Randomized learning-augmented auctions with
revenue guarantees. In International Joint Conference on Artificial Intelligence (IJCAI), pages
2687–2694, 2024. 5

Tanmoy Chakraborty, Zhiyi Huang, and Sanjeev Khanna. Dynamic and nonuniform pricing
strategies for revenue maximization. SIAM Journal on Computing, 2013. 5, 10.1

Shuchi Chawla and J Benjamin Miller. Mechanism design for subadditive agents via an ex ante
relaxation. In Proc. 2016 ACM Conference on Economics and Computation, pages 579–596.
ACM, 2016. 9.1

Hongyu Cheng and Amitabh Basu. Learning cut generating functions for integer programming.
Advances in Neural Information Processing Systems, 37:61455–61480, 2024. 4.2.1

Hongyu Cheng and Amitabh Basu. Generalization guarantees for learning branch-and-cut poli-
cies in integer programming. arXiv preprint arXiv:2505.11636, 2025. 4.2.1

Hongyu Cheng, Sammy Khalife, Barbara Fiedorowicz, and Amitabh Basu. Sample complexity
of algorithm selection using neural networks and its applications to branch-and-cut. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.
4.2.1

Didier Chételat and Andrea Lodi. Continuous cutting plane algorithms in integer programming.
Operations Research Letters, 51(4):439–445, 2023. 11

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A
deep reinforcement learning framework for column generation. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 35:9633–9644, 2022. 11

Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Knightian analysis of the Vickrey
mechanism. Econometrica, 83(5):1727–1754, 2015. 5

Antonia Chmiela, Elias B Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learn-
ing to schedule heuristics in branch-and-bound. In Conference on Neural Information Pro-
cessing Systems (NIPS), 2021. 4.2

Vasek Chvátal. Hard knapsack problems. Operations Research, 28(6):1402–1411, 1980. 4.4.4

Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete math-
ematics, 4(4):305–337, 1973. 4.3, 4.3, 4.5

Ed H. Clarke. Multipart pricing of public goods. Public Choice, 1971. 5, 5.1.1, 6.1

Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization. In ACM
Symposium on Theory of Computing (STOC), pages 243–252, 2014. 5

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming, volume
271. Springer, 2014. 2, 3, 3.1.2, 3.1.2, 4.3, 4.4.4, 4.5

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Conference
on Uncertainty in Artificial Intelligence (UAI), pages 103–110, Edmonton, Canada, 2002. 5,

219

5.4.3, 9, 10.1

Gérard Cornuéjols. Revival of the Gomory cuts in the 1990’s. Annals of Operations Research,
149(1):63–66, 2007. 1, 1

Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Pro-
gramming, 112(1):3–44, 2008. 4.5

Gérard Cornuéjols, Yanjun Li, and Dieter Vandenbussche. K-cuts: A variation of Gomory mixed
integer cuts from the LP tableau. INFORMS Journal on Computing, 15(4):385–396, 2003. 11

Peter Cramton. Spectrum auction design. Review of industrial organization, 42:161–190, 2013.
5, 6

Peter Cramton and Jesse Schwartz. Collusive bidding: Lessons from the FCC spectrum auctions.
Journal of Regulatory Economics, 17:229–252, 2000. 7, 7.1.2

Peter Cramton, Robert Gibbons, and Paul Klemperer. Dissolving a partnership efficiently.
Econometrica: Journal of the Econometric Society, pages 615–632, 1987. 5, 6, 7

Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinatorial Auctions. MIT Press,
2006. 5

Jacques Crémer and Richard P McLean. Full extraction of the surplus in Bayesian and dominant
strategy auctions. Econometrica: Journal of the Econometric Society, pages 1247–1257, 1988.
5.1.1, 8

Harlan Crowder, Ellis L Johnson, and Manfred Padberg. Solving large-scale zero-one linear
programming problems. Operations Research, 1983. 3

Rachel Cummings, Nikhil R Devanur, Zhiyi Huang, and Xiangning Wang. Algorithmic price
discrimination. In Proc. Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2432–2451. SIAM, 2020. 9.1

Michael Curry, Tuomas Sandholm, and John Dickerson. Differentiable economics for random-
ized affine maximizer auctions. In International Joint Conference on Artificial Intelligence
(IJCAI), 2023. 5, 5, 8.3.2

Michael A Cusumano. Amazon and Whole Foods: follow the strategy (and the money). Com-
munications of the ACM, 60(10):24–26, 2017. 10.2, 10.2

Anirban Dasgupta, John Hopcroft, Jon Kleinberg, and Mark Sandler. On learning mixtures of
heavy-tailed distributions. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 491–500. IEEE, 2005. 7.4

P. Dasgupta and Eric Maskin. Efficient auctions. Quarterly Journal of Economics, 115:341–388,
2000. 8

Constantinos Daskalakis and George Pierrakos. Simple, optimal and efficient auctions. In Inter-
national Workshop on Internet and Network Economics (WINE). Springer, 2011. 5

Robert Day and Peter Cramton. Quadratic core-selecting payment rules for combinatorial auc-
tions. Operations Research, 60(3):588–603, 2012. 1, 6, 6, 6, 6, 6.1, 6.3, 6.3.5, 6.5, 6.5, 6.5.1,
6.5.1, 6.5.1, 6.5.1

Robert Day and Paul Milgrom. Optimal incentives in core-selecting auctions. Handbook of

220

Market Design, 2010. 6, 6, 6.1, 6.3, 6.3, 6.3, 6.5.1, 6.6

Robert Day and S. Raghavan. Fair payments for efficient allocations in public sector combinato-
rial auctions. Management Science, 53(9):1389–1406, 2007. 6, 6, 6, 6.1, 6.3, 6.3, 6.5.1, 6.6,
8

Sven de Vries, James Schummer, and Rakesh V Vohra. On ascending Vickrey auctions for
heterogeneous objects. Journal of Economic Theory, 132(1):95–118, 2007. 6.4.1

Gerard Debreu and Herbert Scarf. A limit theorem on the core of an economy. International
Economic Review, 1963. 10.1.2

François Denis. PAC learning from positive statistical queries. In International Conference on
Algorithmic Learning Theory (ALT), pages 112–126. Springer, 1998. 11

Nikhil R Devanur and Jason D Hartline. Limited and online supply and the Bayesian foundations
of prior-free mechanism design. In EC, 2009. 10.1

Nikhil R Devanur, Jason D Hartline, and Qiqi Yan. Envy freedom and prior-free mechanism
design. Journal of Economic Theory, 2015. 10.1

Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complexity of
auctions with side information. In ACM Symposium on Theory of Computing (STOC), 2016.
5

Arnaud Deza and Elias B Khalil. Machine learning for cutting planes in integer programming: a
survey. In International Joint Conference on Artificial Intelligence (IJCAI), pages 6592–6600,
2023. 4.2.1

Arnaud Deza, Elias B Khalil, Zhenan Fan, Zirui Zhou, and Yong Zhang. Learn2Aggregate:
Supervised generation of Chvátal-Gomory cuts using graph neural networks. In AAAI Confer-
ence on Artificial Intelligence (AAAI), volume 39, pages 26947–26954, 2025. 4.2.1

Giovanni Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky. Dash: Dynamic approach
for switching heuristics. European Journal of Operational Research, 248(3):943–953, 2016.
4.2

Ilias Diakonikolas, Christos Papadimitriou, George Pierrakos, and Yaron Singer. Efficiency-
revenue trade-offs in auctions. In International Colloquium on Automata, Languages, and
Programming (ICALP), 2012. 5, 5

Shahar Dobzinski and Nitzan Uziely. Revenue loss in shrinking markets. In ACM Conference
on Economics and Computation (EC), 2018. 10.2

Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for
DSIC affine maximizer auction design. Advances in Neural Information Processing Systems,
36, 2023. 5, 8.3.2

Richard M Dudley. Universal Donsker classes and metric entropy. The Annals of Probability,
1987. 10.1.1, 10.1.1, 10.1.1

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning. In International Conference on Machine Learning
(ICML), pages 1706–1715. PMLR, 2019. 5, 5, 7.4, 8.3.2

221

Paul Dütting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. Mechanism
design for large language models. In ACM Web Conference (WWW), pages 144–155, 2024. 7,
11

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the gen-
eralized second-price auction: Selling billions of dollars worth of keywords. The American
Economic Review, 97(1):242–259, March 2007. ISSN 0002-8282. 5, 7

Aytek Erdil and Paul Klemperer. A new payment rule for core-selecting package auctions. Jour-
nal of the European Economic Association, 8(2-3):537–547, 2010. 6, 6, 6, 6.1, 6.5, 6.5.1,
6.5.1

Jeff Erickson. Linear programming. https://courses.grainger.illinois.edu/
cs473/sp2017/notes/H-lp.pdf, 2017. 7.3.1

Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: A framework and survey. European Journal of Operational Research, 314(1):1–14,
2024. 7.4

Martin S Feldstein. Equity and efficiency in public sector pricing: the optimal two-part tariff.
The Quarterly Journal of Economics, pages 176–187, 1972. 9.1

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98:23–47,
2002. 4.4.4

Matteo Fischetti and Andrea Lodi. Optimizing over the first chvátal closure. Mathematical
Programming, 110(1):3–20, 2007. 11

Alex S Fukunaga. A branch-and-bound algorithm for hard multiple knapsack problems. Annals
of Operations Research, 184(1):97–119, 2011. 3.2

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hen-
del, Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL http://www.optimization-online.org/DB_HTML/
2020/03/7705.html. 4.4, 4.4.1, 4.5.2

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
binatorial optimization with graph convolutional neural networks. In Conference on Neural
Information Processing Systems (NIPS), pages 15554–15566, 2019. 4.2

Andrew Gilpin and Tuomas Sandholm. Information-theoretic approaches to branching in search.
Discrete Optimization, 8(2):147–159, 2011. Early version in IJCAI-07. 4.4.4

Vasilis Gkatzelis, Kostas Kollias, Alkmini Sgouritsa, and Xizhi Tan. Improved price of anarchy
via predictions. In ACM Conference on Economics and Computation (EC), 2022. 5, 5

Vasilis Gkatzelis, Daniel Schoepflin, and Xizhi Tan. Clock auctions augmented with unreliable
advice. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2629–2655. SIAM,
2025. 5

222

https://courses.grainger.illinois.edu/cs473/sp2017/notes/H-lp.pdf
https://courses.grainger.illinois.edu/cs473/sp2017/notes/H-lp.pdf
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html

Gagan Goel, Mohammad Reza Khani, and Renato Paes Leme. Core-competitive auctions. In
ACM Conference on Economics and Computation (EC), pages 149–166, 2015. 6

Jacob K Goeree and Yuanchuan Lien. On the impossibility of core-selecting auctions. Theoreti-
cal economics, 11(1):41–52, 2016. 6, 6, 6.2, 6.2, 6.6, 8

Andor Goetzendorff, Martin Bichler, Pasha Shabalin, and Robert W Day. Compact bid languages
and core pricing in large multi-item auctions. Management Science, 61(7):1684–1703, 2015.
5.6, 6, 6, 11

Andrew Goldberg, Jason Hartline, and Andrew Wright. Competitive auctions and digital goods.
In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Washington, DC, 2001. 5,
5.4.2, 10.1

Maris Goldmanis, Ali Hortaçsu, Chad Syverson, and Önsel Emre. E-commerce and the market
structure of retail industries. The Economic Journal, 120(545):651–682, 2010. 10.2, 10.2

Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64(5):275 – 278, 1958. 1, 4.3, 4.3, 4.4.4, 4.5

J Green and J-J Laffont. Characterization of satisfactory mechanisms for the revelation of pref-
erences for public goods. Econometrica, 45:427–438, 1977. 7.1.1, 7.1.2

J Green and J-J Laffont. Incentives in Public Decision Making. Amsterdam: North-Holland,
1979. 1

M. Grotschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tions. Springer-Verlag, 1993. 5.2.1, 8.3.2

Theodore Groves. Incentives in teams. Econometrica, 1973. 5, 5.1.1, 5.1.1, 6.1, 7

Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Lifted cover inequalities for
0-1 integer programs: Computation. INFORMS Journal on Computing, 1998. 3, 3.2

Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Lifted cover inequalities for
0-1 integer programs: Complexity. INFORMS Journal on Computing, 1999. 3, 3.1.1

Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Sequence independent lifting
in mixed integer programming. Journal of Combinatorial Optimization, 4(1):109–129, 2000.
1, 3, 3, 3, 3, 3.1, 3.1, 3.1.2, 3.1.2, A, A, A

Oscar Guaje, Arnaud Deza, Aleksandr M Kazachkov, and Elias B Khalil. Machine learning
for optimization-based separation: the case of mixed-integer rounding cuts. arXiv preprint
arXiv:2408.08449, 2024. 4.2.1

Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Eco-
nomic Theory, 87:95–124, 1999. 10.2.1

Mingyu Guo. VCG redistribution with gross substitutes. In AAAI Conference on Artificial
Intelligence (AAAI), 2011. 10.2.1

Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua Ben-
gio. Hybrid models for learning to branch. In Conference on Neural Information Processing
Systems (NIPS), 2020. 4.2

Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection.

223

SIAM Journal on Computing, 46(3):992–1017, 2017. 4.2

Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon, and
Frank McSherry. On profit-maximizing envy-free pricing. In Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1164–1173, 2005. 5

MohammadTaghi Hajiaghayi, Sebastien Lahaie, Keivan Rezaei, and Suho Shin. Ad auctions for
LLMs via retrieval augmented generation. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems (NeurIPS), 2024. 7, 11

Sergiu Hart and Noam Nisan. The menu-size complexity of auctions. In ACM Conference on
Electronic Commerce (EC), pages 565–566, 2013. 5.4.3

Sergiu Hart and Noam Nisan. Selling multiple correlated goods: Revenue maximization and
menu-size complexity. Journal of Economic Theory, 183:991–1029, 2019. 9.1

Sergiu Hart and Philip J Reny. Maximal revenue with multiple goods: Nonmonotonicity and
other observations. Theoretical Economics, 10(3):893–922, 2015. 5.4.3

Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strategies over
social networks. In International Conference on World Wide Web (WWW), pages 189–198,
2008. 10.2.3

Jason D Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In ACM conference
on Electronic Commerce (EC), pages 225–234, 2009. 5

David Hartvigsen and Eitan Zemel. The complexity of lifted inequalities for the knapsack prob-
lem. Discrete Applied Mathematics, 39(2):113–123, 1992. 3.1.2

David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded
Vapnik-Chervonenkis dimension. J. Comb. Theory, Ser. A, 1995. 10.1.2

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
In Conference on Neural Information Processing Systems (NIPS), 2014. 4.2

Gail Hohner, John Rich, Ed Ng, Grant Reid, Andrew J. Davenport, Jayant R. Kalagnanam,
Ho Soo Lee, and Chae An. Combinatorial and quantity-discount procurement auctions benefit
Mars, Incorporated and its suppliers. Interfaces, 33(1):23–35, 2003. 5, 6, 10.2.3

Christopher Hojny, Tristan Gally, Oliver Habeck, Hendrik Lüthen, Frederic Matter, Marc E
Pfetsch, and Andreas Schmitt. Knapsack polytopes: a survey. Annals of Operations Research,
292:469–517, 2020. 3, 3.1.2

Bengt Holmström. Groves’ scheme on restricted domains. Econometrica, 47(5):1137–1144,
1979. 1, 5.1.1, 5.1.1, 7.1.1, 7.1.2, 7.1.1

Ron Holzman, Noa Kfir-Dahav, Dov Monderer, and Moshe Tennenholtz. Bundling equilibrium
in combinatorial auctions. Games and Economic Behavior, 47(1):104–123, April 2004. 5

Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and Max Chickering.
A Bayesian approach to tackling hard computational problems. In Conference on Uncertainty
in Artificial Intelligence (UAI), 2001. 4, 4.4.2, 5

David Huang, Francisco Marmolejo-Cossı́o, Edwin Lock, and David Parkes. Accelerated pref-
erence elicitation with LLM-based proxies. arXiv preprint arXiv:2501.14625, 2025. 11

224

Zeren Huang, Kerong Wang, Furui Liu, Hui-ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
arXiv preprint arXiv:2105.13645, 2021. 4.2

Brady Hunsaker and Craig A Tovey. Simple lifted cover inequalities and hard knapsack prob-
lems. Discrete Optimization, 2(3):219–228, 2005. 3.1.1

Frank Hutter, Holger Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36(1):267–
306, 2009. ISSN 1076-9757. 2, 4, 4.2, 4.4.2

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proc. of LION-5, pages 507–523, 2011. 4.2

Nathanael Hyafil and Craig Boutilier. Regret minimizing equilibria and mechanisms for games
with strict type uncertainty. In Conference on Uncertainty in Artificial Intelligence (UAI),
2004. 5

Raghuram Iyengar, Kamel Jedidi, and Rajeev Kohli. A conjoint approach to multipart pricing.
Journal of Marketing Research, 45(2):195–210, 2008. 9.1

Philippe Jehiel, Moritz Meyer-ter Vehn, Benny Moldovanu, and William R Zame. The limits of
ex post implementation. Econometrica, 74(3):585–610, 2006. 8

Philippe Jehiel, Moritz Meyer-Ter-Vehn, and Benny Moldovanu. Mixed bundling auctions. Jour-
nal of Economic Theory, 2007. 10.1, 10.2.1

Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. Mathematical
Programming, 6(1):105–109, 1974. 4.3.1, 4.4.4, 4.5.3

Randall S Jones and Haruki Seitani. Labour market reform in Japan to cope with a shrinking and
ageing population. OECD Economic Department Working Papers, (1568), 2019. 10.2

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC—instance-specific
algorithm configuration. In European Conference on Artificial Intelligence (ECAI), 2010. 4,
4.2, 4.4.2

Adam Tauman Kalai, Varun Kanade, and Yishay Mansour. Reliable agnostic learning. Journal
of Computer and System Sciences, 78(5):1481–1495, 2012. 11

Konstantinos Kaparis and Adam N Letchford. Separation algorithms for 0-1 knapsack polytopes.
Mathematical programming, 124:69–91, 2010. 3, 3

Orcun Karaca and Maryam Kamgarpour. Core-selecting mechanisms in electricity markets.
IEEE Transactions on Smart Grid, 11(3):2604–2614, 2019. 6

Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Mathematical
Programming, 128(1-2):403–436, 2011. 4.4.4

Kohei Kawai, Masatomo Suzuki, and Chihiro Shimizu. Shrinkage in Tokyo’s central business
district: Large-scale redevelopment in the spatially shrinking office market. Sustainability, 11
(10):2742, 2019. 10.2

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In AAAI Conference on Artificial Intelligence (AAAI),

225

2016. 4, 4.2

Elias Khalil, Bistra Dilkina, George Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In International Joint Conference on Artificial Intelligence
(IJCAI), 2017. 4.2

Mikhail Khodak, Edmond Chow, Maria Florina Balcan, and Ameet Talwalkar. Learning to
relax: Setting solver parameters across a sequence of linear system instances. In The Twelfth
International Conference on Learning Representations (ICLR), 2024. 4.2

Misha Khodak, Maria-Florina Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning pre-
dictions for algorithms with predictions. Advances in Neural Information Processing Systems
(NeurIPS), 2022. 5, 5.3.2

Diego Klabjan, George L Nemhauser, and Craig Tovey. The complexity of cover inequality
separation. Operations Research Letters, 23(1-2):35–40, 1998. 3

Robert Kleinberg and Yang Yuan. On the ratio of revenue to welfare in single-parameter mech-
anism design. In ACM Conference on Electronic Commerce (EC), 2013. 5, 5

Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. Efficiency through procrastination:
Approximately optimal algorithm configuration with runtime guarantees. In International
Joint Conference on Artificial Intelligence (IJCAI), 2017. 2, 4.2

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon Graham. Procrastinating
with confidence: Near-optimal, anytime, adaptive algorithm configuration. Conference on
Neural Information Processing Systems (NIPS), 2019. 2

Sreya Kolay and Greg Shaffer. Bundling and menus of two-part tariffs. The Journal of Industrial
Economics, 51(3):383–403, 2003. 9.1

Vijay Krishna and Motty Perry. Efficient mechanism design. Available at SSRN 64934, 1998. 5,
5, 5.1.1, 5.1.1, 5.6, 6, 6, 6.1, 6.2, 7, 7, 7.1.3, 8, 8.1, 8.2.1, 8.2.5, 8.4

Christian Kroer and Tuomas Sandholm. Computational bundling for auctions. In AAMAS, 2015.
10.1.3, 10.1.4, 10.1.4, 10.2.3

Sébastien Lahaie and Benjamin Lubin. Adaptive-price combinatorial auctions. In ACM Confer-
ence on Economics and Computation (EC), pages 749–750, 2019. 11

Anja Lambrecht, Katja Seim, and Bernd Skiera. Does uncertainty matter? Consumer behavior
under three-part tariffs. Marketing Science, 26(5):698–710, 2007. 9.1

Connor Lawless, Yingxi Li, Anders Wikum, Madeleine Udell, and Ellen Vitercik. LLMs for
cold-start cutting plane separator configuration. arXiv preprint arXiv:2412.12038, 2024. 4.2.1

Hayne E Leland and Robert A Meyer. Monopoly pricing structures with imperfect discrimina-
tion. The Bell Journal of Economics, pages 449–462, 1976. 9.1

Adam N Letchford and Georgia Souli. On lifted cover inequalities: A new lifting procedure with
unusual properties. Operations Research Letters, 47(2):83–87, 2019. 3, 3, 3.1.2

Adam N Letchford and Georgia Souli. Lifting the knapsack cover inequalities for the knapsack
polytope. Operations Research Letters, 48(5):607–611, 2020. 3

W Arthur Lewis. The two-part tariff. Economica, 8(31):249–270, 1941. 9

226

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for com-
binatorial auction algorithms. In ACM Conference on Electronic Commerce (ACM-EC), pages
66–76, Minneapolis, MN, 2000. 3.2, 6.5.1, 11

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM, 56(4):1–52,
2009. ISSN 0004-5411. 4, 4.4.2

Kevin Leyton-Brown, Paul Milgrom, and Ilya Segal. Economics and computer science of a radio
spectrum reallocation. Proceedings of the National Academy of Sciences, 114(28):7202–7209,
2017. 5, 5.6, 6

Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):
3257–3287, 2017. 5.6

Sirui Li, Wenbin Ouyang, Max B. Paulus, and Cathy Wu. Learning to configure separators
in branch-and-cut. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023. 3.3, 4.2.1

Anton Likhodedov and Tuomas Sandholm. Methods for boosting revenue in combinatorial auc-
tions. In National Conference on Artificial Intelligence (AAAI), pages 232–237, San Jose, CA,
2004. 1, 5, 5, 9, 10.1

Anton Likhodedov and Tuomas Sandholm. Approximating revenue-maximizing combinatorial
auctions. In National Conference on Artificial Intelligence (AAAI), Pittsburgh, PA, 2005. 5, 5,
9, 10.1, 10.1, 10.1.3

Haotian Ling, Zhihai Wang, and Jie Wang. Learning to stop cut generation for efficient mixed-
integer linear programming. In AAAI Conference on Artificial Intelligence (AAAI), volume 38,
pages 20759–20767, 2024. 4.2.1

Giuseppe Lopomo, Luca Rigotti, and Chris Shannon. Uncertainty in mechanism design. arXiv
preprint arXiv:2108.12633, 2021. 10.2

William S. Lovejoy. Optimal mechanisms with finite agent types. Management Science, 53(5):
788–803, 2006. 7

Pinyan Lu, Zongqi Wan, and Jialin Zhang. Competitive auctions with imperfect predictions. In
ACM Conference on Economics and Computation (EC), pages 1155–1183, 2024. 5, 6

Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general disjunc-
tions. In Operations Research and Cyber-Infrastructure, pages 101–118. Springer, 2009. 4.4.4

Alexey Malakhov and Rakesh V Vohra. An optimal auction for capacity constrained bidders: a
network perspective. Economic Theory, 2009. 5

Kyle Mana, Fernando Acero, Stephen Mak, Parisa Zehtabi, Michael Cashmore, Daniele Maga-
zzeni, and Manuela Veloso. Accelerating cutting-plane algorithms via reinforcement learning
surrogates. In AAAI Conference on Artificial Intelligence (AAAI), volume 38, pages 20786–
20793, 2024. 4.2.1

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting planes
in integer and mixed integer programming. Discrete Applied Mathematics, 2002. 3

227

Evangelos Markakis and Artem Tsikiridis. On core-selecting and core-competitive mechanisms
for binary single-parameter auctions. In International Conference on Web and Internet Eco-
nomics (WINE), pages 271–285. Springer, 2019. 6

Leslie M Marx and Greg Shaffer. Opportunism and menus of two-part tariffs. International
Journal of Industrial Organization, 22(10):1399–1414, 2004. 9.1

Eric Maskin and John Riley. Monopoly with incomplete information. The RAND Journal of
Economics, 15(2):171–196, 1984. 9.1

Victor J Massad. Understanding the cord-cutters: An adoption/self-efficacy approach. Interna-
tional Journal on Media Management, 20(3):216–237, 2018. 10.2, 10.2

R Preston McAfee and Philip J Reny. Correlated information and mechanism design. Econo-
metrica: Journal of the Econometric Society, pages 395–421, 1992. 5.1.1

Andres Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate bid
predictions. Advances in Neural Information Processing Systems (NeurIPS), 2017. 5, 5

Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics of
Operations Research, pages 414–424, 1979. 4.4.3

Cade Metz. Facebook doesn’t make as much money as it could—on purpose. Wired, 2015. 5.1.1

Paul Milgrom and R Weber. A theory of auctions and competitive bidding. Econometrica, 50:
1089–1122, 1982. 8, 11

John Milnor. On the Betti numbers of real varieties. Proceedings of the American Mathematical
Society, 15(2):275–280, 1964. 4.5

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications
of the ACM, 2022. 5, 5

Mehryar Mohri and Andres Muñoz Medina. Learning theory and algorithms for revenue opti-
mization in second price auctions with reserve. In ICML, 2014. 10.1

Paulo Klinger Monteiro. Abstract types and distributions in independent private value auctions.
Economic Theory, 40(3):497–507, 2009. 7

Dmitry Moor, Sven Seuken, Tobias Grubenmann, and Abraham Bernstein. Core-selecting pay-
ment rules for combinatorial auctions with uncertain availability of goods. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 424–432, 2016. 6

Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning–based column selection
for column generation. Transportation Science, 55(4):815–831, 2021. 11

Jamie Morgenstern and Tim Roughgarden. Learning simple auctions. In Conference on Learning
Theory (COLT), 2016. 1, 5, 5

Jamie H Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly optimal auc-
tions. In NIPS, 2015. 1, 10.1

Ahuva Mu’alem and Michael Schapira. Mechanism design over discrete domains. In ACM
Conference on Electronic Commerce (EC), pages 31–37, 2008. 7

Michael M Murphy. Price discrimination, market separation, and the multi-part tariff. Economic
Inquiry, 15(4):587, 1977. 9.1

228

Roger Myerson. Optimal auction design. Mathematics of Operation Research, 6:58–73, 1981.
1, 5, 5, 5, 5.4.3, 7

Roger Myerson and Mark Satterthwaite. Efficient mechanisms for bilateral trading. Journal of
Economic Theory, 28:265–281, 1983. 5, 6, 7

Sridhar Narayanan, Pradeep K Chintagunta, and Eugenio J Miravete. The role of self selec-
tion, usage uncertainty and learning in the demand for local telephone service. Quantitative
Marketing and Economics, 5(1):1–34, 2007. 9.1

Balaubramaniam Kausik Natarajan. On learning boolean functions. In ACM Symposium on
Theory of Computing (STOC), pages 296–304, 1987. 11

Ioannis Neokosmidis, Theodoros Rokkas, Dimitris Xydias, Antonino Albanese, Muham-
mad Shuaib Siddiqui, Carlos Colman-Meixner, and Dimitra Simeonidou. Are 5g networks
and the neutral host model the solution to the shrinking telecom market. In IFIP International
Conference on Artificial Intelligence Applications and Innovations, pages 70–77. Springer,
2018. 10.2

Yew-Kwang Ng and Mendel Weisser. Optimal pricing with a budget constraint–the case of the
two-part tariff. The Review of Economic Studies, 41(3):337–345, 1974. 9.1

Rad Niazadeh, Jason Hartline, Nicole Immorlica, Mohammad Reza Khani, and Brendan Lucier.
Fast core pricing for rich advertising auctions. Operations Research, 70(1):223–240, 2022. 6,
6

Noam Nisan. Bidding and allocation in combinatorial auctions. In ACM Conference on Elec-
tronic Commerce (ACM-EC), pages 1–12, Minneapolis, MN, 2000. 6.1, 6.6, 11

Noam Nisan. Introduction to mechanism design (for computer scientists). Algorithmic Game
Theory, 9:209–242, 2007. 7.1.1, 7.1.1, 7.3.1

Walter Y Oi. A Disneyland dilemma: Two-part tariffs for a Mickey Mouse monopoly. The
Quarterly Journal of Economics, 85(1):77–96, 1971. 9

Abraham Othman and Tuomas Sandholm. Envy quotes and the iterated core-selecting combi-
natorial auction. In AAAI Conference on Artificial Intelligence (AAAI), 2010. 6, 6, 6.2, 6.2,
8

Marion Ott and Marissa Beck. Incentives for overbidding in minimum-revenue core-selecting
auctions. 2013. 6

Jonathan H. Owen and Sanjay Mehrotra. Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Computational Optimization and
Applications, 20(2):159–170, November 2001. 4.4.4

Mallesh M Pai and Rakesh Vohra. Optimal auctions with financially constrained buyers. Journal
of Economic Theory, 150:383–425, 2014. 5

Ignacio Palacios-Huerta, David C Parkes, and Richard Steinberg. Combinatorial auctions in
practice. Journal of Economic Literature, 62(2):517–553, 2024. 6

Christos H Papadimitriou and Mihalis Yannakakis. The complexity of facets (and some facets of
complexity). In ACM symposium on Theory of computing, pages 255–260, 1982. 3.1.2

229

David Parkes, Jayant Kalagnanam, and Marta Eso. Achieving budget-balance with Vickrey-
based payment schemes in exchanges. In International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1161–1168, Seattle, WA, 2001. 6, 6.5.2

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learn-
ing to cut by looking ahead: Cutting plane selection via imitation learning. In International
Conference on Machine Learning (2022), pages 17584–17600. PMLR, 2022. 4.2.1

Michael Perregard. New in FICO Xpress solver. https://plato.asu.edu/ftp/
informs_talks_2024/perregard.pdf, 2024. 3, 3.1.2

Ivan PL Png and Hao Wang. Buyer uncertainty and two-part pricing: theory and applications.
Management Science, 56(2):334–342, 2010. 9.1

David Pollard. Convergence of Stochastic Processes. Springer, 1984. 4.1

Siddharth Prasad, Martin Mladenov, and Craig Boutilier. Content prompting: Modeling con-
tent provider dynamics to improve user welfare in recommender ecosystems. arXiv preprint
arXiv:2309.00940, 2023. 7

Siddharth Prasad, Ellen Vitercik, Maria-Florina Balcan, and Tuomas Sandholm. New sequence-
independent lifting techniques for cutting planes and when they induce facets. arXiv preprint
arXiv:2401.13773, 2024. 4.4.4, 11

Siddharth Prasad, Maria-Florina Balcan, and Tuomas Sandholm. Revenue-optimal efficient
mechanism design with general type spaces. arXiv preprint arXiv:2505.13687, 2025a. 8.4, 11

Siddharth Prasad, Maria-Florina Balcan, and Tuomas Sandholm. Weakest bidder types and new
core-selecting combinatorial auctions. arXiv preprint arXiv:2505.13680, 2025b. 8, 11

Pol Puigdemont, Stratis Skoulakis, Grigorios Chrysos, and Volkan Cevher. Learning to remove
cuts in integer linear programming. arXiv preprint arXiv:2406.18781, 2024. 4.2.1

Kevin Roberts. The characterization of implementable social choice rules. In J-J Laffont, editor,
Aggregation and Revelation of Preferences. 1979. 5, 5.5, 8.3.2, 10.1, 10.2.1

Marzena Rostek and Nathan Yoder. Core selection in auctions and exchanges. Working paper,
2015. 6

Marzena Rostek and Nathan Yoder. Reallocative auctions and core selection. Available at SSRN
4450987, 2023. 6

Alvin E Roth. Marketplaces, markets, and market design. American Economic Review, 108(7):
1609–1658, 2018. 5

Michael Rothkopf, Aleksandar Pekeč, and Ronald Harstad. Computationally manageable com-
binatorial auctions. Management Science, 44(8):1131–1147, 1998. 5.2.1

Tim Roughgarden, Inbal Talgam-Cohen, and Qiqi Yan. Robust auctions for revenue via enhanced
competition. Operations Research, 68(4):1074–1094, 2020. 10.2.3

Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial optimization
with UCT. In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer, 2012. 4.2

Shinsaku Sakaue and Taihei Oki. Sample complexity of learning heuristic functions for greedy-

230

https://plato.asu.edu/ftp/informs_talks_2024/perregard.pdf
https://plato.asu.edu/ftp/informs_talks_2024/perregard.pdf

best-first and a* search. Advances in Neural Information Processing Systems (NeurIPS), 35:
2889–2901, 2022. 4.2

Shinsaku Sakaue and Taihei Oki. Generalization bound and learning methods for data-driven
projections in linear programming. Advances in Neural Information Processing Systems
(NeurIPS), 37:12825–12846, 2024. 4.2.1

Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Ar-
tificial Intelligence, 135:1–54, January 2002a. 6.1, 6.6, 7.2, 10.2.4, 11

Tuomas Sandholm. eMediator: A next generation electronic commerce server. Computational
Intelligence, 18(4):656–676, 2002b. Earlier versions: Washington U. tech report WU-CS-99-
02 Jan. 1999, AAAI-99 Workshop on AI in Ecommerce, AGENTS-00. 6.6

Tuomas Sandholm. Automated mechanism design: A new application area for search algorithms.
In International Conference on Principles and Practice of Constraint Programming, pages
19–36, Cork, Ireland, 2003. 10.1

Tuomas Sandholm. Optimal winner determination algorithms. In Peter Cramton, Yoav Shoham,
and Richard Steinberg, editors, Combinatorial Auctions, pages 337–368. MIT Press, 2006.
Chapter 14. 8.3.2

Tuomas Sandholm. Expressive commerce and its application to sourcing: How we conducted
$35 billion of generalized combinatorial auctions. AI Magazine, 28(3):45–58, 2007. 1, 5, 5.6,
10.2.3, 11

Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions: Lessons
from conducting $60 billion of sourcing. In Zvika Neeman, Alvin Roth, and Nir Vulkan,
editors, Handbook of Market Design. Oxford University Press, 2013. 1, 4, 4.2, 4.4.2, 5, 5.1.1,
5.6, 6, 6.6, 8, 10.2.3

Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combina-
torial auctions. Operations Research, 2015. 5, 5, 5, 9, 10.1, 10.1, 10.1.3

Tuomas Sandholm and Subhash Suri. BOB: Improved winner determination in combinatorial
auctions and generalizations. Artificial Intelligence, 145:33–58, 2003. 10.2.4

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner determination in
combinatorial auction generalizations. In AAMAS, pages 69–76, Bologna, Italy, July 2002. 3.2

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. CABOB: A fast optimal
algorithm for winner determination in combinatorial auctions. Management Science, 2005.
5.2.1, 8.3.2, 10.1.4, 10.2.4

Tuomas Sandholm, David Levine, Michael Concordia, Paul Martyn, Rick Hughes, Jim Jacobs,
and Dennis Begg. Changing the game in strategic sourcing at Procter & Gamble: Expressive
competition enabled by optimization. Interfaces, 36(1):55–68, 2006. 1, 6, 10.2.3

Christian Schlereth, Tanja Stepanchuk, and Bernd Skiera. Optimization and analysis of the prof-
itability of tariff structures with two-part tariffs. European Journal of Operational Research,
206(3):691–701, 2010. 9.1

Clayton Scott and Robert Nowak. Learning minimum volume sets. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 18, 2005. 7.4

231

Dravyansh Sharma, Maria-Florina Balcan, and Travis Dick. Learning piecewise lipschitz func-
tions in changing environments. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 3567–3577. PMLR, 2020. 11

Benlin Shi, Yang Song, Changchen Liu, and Yunfeng Luo. Competition and evolution of lin-
ear and two-part tariff. Computers & Mathematics with Applications, 57(11-12):1895–1900,
2009. 9.1

Haim Shvaytser. A necessary condition for learning from positive examples. Machine Learning,
5(1):101–113, 1990. 11

Vasiliki Skreta. Mechanism design for arbitrary type spaces. Economics Letters, 91(2):293–299,
2006. 7

Hyoung Ju Song, Jihwan Yeon, and Seoki Lee. Impact of the COVID-19 pandemic: Evidence
from the US restaurant industry. International Journal of Hospitality Management, 92:102702,
2021. 10.2, 10.2

Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood search
framework for solving integer programs. In Conference on Neural Information Processing
Systems (NIPS), 2020. 4.2

Ermis Soumalias, Yanchen Jiang, Kehang Zhu, Michael Curry, Sven Seuken, and David C
Parkes. LLM-powered preference elicitation in combinatorial assignment. arXiv preprint
arXiv:2502.10308, 2025. 11

Arun Sundararajan. Nonlinear pricing of information goods. Management Science, 50(12):
1660–1673, 2004. 9.1

Pingzhong Tang and Tuomas Sandholm. Mixed-bundling auctions with reserve prices. In AA-
MAS, 2012. 10.1

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. International Conference on Machine Learning (ICML), 2020. 4.2

René Thom. Sur l’homologie des varietes algebriques reelles. In Differential and combinatorial
topology, pages 255–265. Princeton University Press, 1965. 4.5

Taiki Todo. Mechanism design with uncertainty. In International Joint Conference on Artificial
Intelligence, (IJCAI), 2020. 10.2

Csaba D Tóth, Joseph O’Rourke, and Jacob E Goodman. Handbook of Discrete and Computa-
tional Geometry. Chapman and Hall/CRC, 2017. 10.2.4

Mark Turner, Timo Berthold, Mathieu Besançon, and Thorsten Koch. Cutting plane selection
with analytic centers and multiregression. In International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR), pages 52–
68. Springer, 2023. 3.3

Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
November 1984. 11

Thijs Van de Graaf. Battling for a shrinking market: oil producers, the renewables revolution,
and the risk of stranded assets. In The Geopolitics of Renewables, pages 97–121. Springer,

232

2018. 10.2

Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280,
1971. 4.1

Hal R. Varian. Position auctions. International Journal of Industrial Organization, pages 1163–
1178, 2007. 7

Hal R Varian and Christopher Harris. The VCG auction in theory and practice. American
Economic Review, 2014. 5.1.1

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Fi-
nance, 1961. 5, 5.1.1, 6.1

Ellen Vitercik. Automated Algorithm and Mechanism Configuration. PhD thesis, Carnegie Mel-
lon University, USA, 2021. 4.4.1, 4.4.5

Rakesh V Vohra. Mechanism design: a linear programming approach, volume 47. Cambridge
University Press, 2011. 5.1.1, 7.3.1, 8.2.1, 8.2.2

William Walsh, David Parkes, Tuomas Sandholm, and Craig Boutilier. Computing reserve prices
and identifying the value distribution in real-world auctions with market disruptions. In AAAI
Conference on Artificial Intelligence (AAAI), 2008. Short paper. 5

Tonghan Wang, Yanchen Jiang, and David C Parkes. Gemnet: Menu-based, strategy-proof multi-
bidder auctions through deep learning. In ACM Conference on Economics and Computation
(EC), pages 1100–1100, 2024. 7.4

Hugh E Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
American Mathematical Society, 133(1):167–178, 1968. 4.5

Michael Weiss, Benjamin Lubin, and Sven Seuken. SATS: A universal spectrum auction test
suite. In Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages 51–59,
2017. 6.6, 11

Gellért Weisz, András György, and Csaba Szepesvári. LEAPSANDBOUNDS: A method for
approximately optimal algorithm configuration. 2018. 4.2

Franz Wesselmann and Uwe Stuhl. Implementing cutting plane management and selection tech-
niques. In Technical Report. University of Paderborn, 2012. 4.4

Robert B Wilson. Nonlinear pricing. Oxford University Press on Demand, 1993. 9.1

Laurence A Wolsey. Valid inequalities and superadditivity for 0–1 integer programs. Mathemat-
ics of Operations Research, 2(1):66–77, 1977. 3

Kati Wolter. Implementation of cutting plane separators for mixed integer programs. Dipolma
thesis, Technische Universität Berlin, 2006. 3, 3.2

Chenyang Xu and Pinyan Lu. Mechanism design with predictions. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 2022. 5, 5

Haifeng Xu. On the tractability of public persuasion with no externalities. In ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2708–2727. SIAM, 2020. 9.2.2

L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm selection

233

for SAT. Journal of Artificial Intelligence Research, 32(1):565–606, 2008. 4, 4.4.2

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated al-
gorithm configuration and selection for mixed integer programming. In RCRA workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
at the International Joint Conference on Artificial Intelligence (IJCAI), 2011. 4, 4.4.2

Yu Yang, Natashia Boland, Bistra Dilkina, and Martin Savelsbergh. Learning generalized strong
branching for set covering, set packing, and 0-1 knapsack problems. Technical report, Tech-
nical Report, 2020., 2020. 4.2, 4.4.4

Yu Yang, Natashia Boland, and Martin Savelsbergh. Multivariable branching: A 0-1 knapsack
problem case study. INFORMS Journal on Computing, 2021. 4.4.4, 4.4.4

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. The effect of false-name bids in com-
binatorial auctions: New fraud in Internet auctions. Games and Economic Behavior, 46(1):
174–188, 2004. 10.2.1

234

	1 Introduction
	I Cutting Plane Theory and Configuration for Integer Programming
	2 Primer on Integer Programming, Cutting Planes, and Branch-and-Cut Tree Search
	3 New Sequence-Independent Lifting Techniques for Cover Inequalities and When They Induce Facets
	3.1 New Sequence-Independent Lifting Functions: Structure and Properties
	3.2 Experimental Evaluation
	3.3 Conclusions and Future Research

	4 Learning to Tune Branch-and-Cut
	4.1 Learning Theory Background
	4.2 Related Work
	4.3 Sample Complexity of Learning Chvátal-Gomory Cuts
	4.4 Sample Complexity Bounds for Branch-and-Cut and General Tree Search
	4.5 Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed-Integer Cuts

	II Mechanism Design with Side Information with Applications to Combinatorial Markets
	5 Multidimensional Mechanism Design with Side Information
	5.1 Problem Formulation, Example Applications, and Weakest-Type VCG
	5.2 Measuring Predictor Quality via Weakest Types
	5.3 Main Mechanism and its Guarantees
	5.4 Other Forms of Side Information
	5.5 Beyond VCG: Weakest-Type Affine-Maximizer Mechanisms
	5.6 Conclusions and Future Research

	6 Weakest Bidder Types and New Core-Selecting Combinatorial Auctions
	6.1 Problem Formulation and Background on Core-Selecting CAs
	6.2 Impossibility of IC Core-Selecting CAs
	6.3 Our New Core-Selecting CAs and their Properties
	6.4 Computing Weakest-Type Prices
	6.5 Experiments
	6.6 Conclusions and Future Research

	7 Revenue-Optimal Efficient Mechanism Design with General Type Spaces
	7.1 Problem Formulation, Mechanism Design Background, and Examples of Disconnected Type Spaces
	7.2 Example Illustrating Sub-optimality of Vanilla Weakest Type
	7.3 Characterization of the Optimal Efficient Mechanism
	7.4 Conclusions and Future Research

	8 Learning to Generate Artificial Competition
	8.1 Problem Formulation, f-VCG Auctions, and Our Bidder Model
	8.2 Revenue-Optimal Efficient Auctions
	8.3 Learning to Generate Competition
	8.4 Conclusions and Future Research

	III Other Models of Learning for Mechanism Design
	9 Learning Revenue-Maximizing Two-Part Tariffs
	9.1 Problem Formulation
	9.2 Algorithms for Optimal TPT Structures
	9.3 Market Segmentation

	10 Within-Instance Learning for Auction Design
	10.1 Learning Within an Instance for Designing High-Revenue Combinatorial Auctions
	10.2 Maximizing Revenue Under Market Shrinkage and Market Uncertainty

	11 Conclusions and Future Research Directions
	A Omitted Details About Lifting in Chapter 3
	B Omitted Details About Plots in Section 4.5
	Bibliography

