Weakest Bidder Types and New Core-Selecting Combinatorial Auctions

Siddharth Prasad'*, Maria-Florina Balcan?, Tuomas Sandholm

2,345

I'Toyota Technological Institute at Chicago
2School of Computer Science, Carnegie Mellon University
3Strategy Robot, Inc. #Strategic Machine, Inc. >Optimized Markets, Inc.
sprasad @ttic.edu, ninamf@cs.cmu.edu, sandholm @cs.cmu.edu

Abstract

Core-selecting combinatorial auctions are popular auction de-
signs that constrain prices to eliminate the incentive for any
group of bidders—with the seller—to renegotiate for a better
deal. They help overcome the low-revenue issues of classi-
cal combinatorial auctions. We introduce a new class of core-
selecting combinatorial auctions that leverage bidder infor-
mation available to the auction designer. We model such in-
formation through constraints on the joint type space of the
bidders—these are constraints on bidders’ private valuations
that are known to hold by the auction designer before bids are
elicited. First, we show that type space information can over-
come the well-known impossibility of incentive-compatible
core-selecting combinatorial auctions. We present a revised
and generalized version of that impossibility result that de-
pends on how much information is conveyed by the type
spaces. We then devise a new family of core-selecting combi-
natorial auctions and show that they minimize the sum of bid-
ders’ incentives to deviate from truthful bidding. We develop
new constraint generation techniques—and build upon ex-
isting quadratic programming techniques—to compute core
prices, and conduct experiments to evaluate the incentive,
revenue, fairness, and computational merits of our new auc-
tions. Our new core-selecting auctions directly improve upon
existing designs that have been used in many high-stakes auc-
tions around the world. We envision that they will be a useful
addition to any auction designer’s toolkit.

1 Introduction

The design of combinatorial auctions (CAs) is a complex
task that requires careful engineering along several axes to
best serve the application at hand. Just some of these axes
are: taming cognitive and communication costs of eliciting
and understanding bidders’ inherently combinatorial valua-
tions, tractable computation and optimization of economi-
cally efficient outcomes that allocate resources to those that
value them the most, and determining prices that simplify
bidders’ incentives while generating acceptable revenues for
the seller. These complexities are most evident in fielded
applications of CAs including sourcing (Sandholm 2013;
Hohner et al. 2003; Sandholm et al. 2006), spectrum allo-
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cation (Cramton 2013; Leyton-Brown, Milgrom, and Segal
2017), treasury auctions (Klemperer 2010), and others.

The focus of the present paper is on better pricing rules
for CAs. The classical Vickrey (1961)-Clarke (1971)-Groves
(1973) (VCG) mechanism is an economically efficient CA
that is incentive compatible (IC)—a property of great practi-
cal importance since it levels the playing ground for bidders
by making it worthless to strategize about their individual
bids. But, the VCG auction has two major complementary
issues (among others (Ausubel and Milgrom 2006)) that pre-
vent it from being practically viable: low revenue and prices
that are not in the core. The latter means that some bidders
might end up paying so little for their winnings that others
who offered more for those same items would take issue.
Core-selecting CAs fix this problem with prices that ensure
no coalition of bidders plus the seller would want to renego-
tiate for a better deal, but these give up on incentive compat-
ibility. So, most core-selecting CAs use prices that minimize
bidders’ incentives to deviate from truthful bidding.

Core-selecting CAs have been used to auction licenses
for wireless spectrum by a number of countries’ gov-
ernments including Australia, Canada, Denmark, Ireland,
Mexico, the Netherlands, Portugal, Switzerland, the United
Kingdom, and others, generating many billions of dollars
in revenue (Cramton 2013; Palacios-Huerta, Parkes, and
Steinberg 2024). Ausubel, Aperjis, and Baranov (2017) re-
view some of the key design choices of the FCC incen-
tive auction that was completed in the United States in
2017. They suggest that some instances of winners paying
zero for certain packages despite losers bidding competi-
tively (Ausubel and Baranov 2023) could have been avoided
with a core-selecting payment rule instead of the VCG rule
adopted by the FCC (though a core-selecting rule would
have introduced other practical difficulties in other stages
of the auction). While the most prominent real-world de-
ployment of core-selecting CAs is probably spectrum auc-
tions, their use has been proposed for other important appli-
cations such as electricity markets (Karaca and Kamgarpour
2019), advertisement markets (Goetzendorff et al. 2015; Ni-
azadeh et al. 2022), and auctions for wind farm development
rights (Ausubel and Cramton 2011).

In this paper we introduce a new class of core-selecting
CAs that improve upon prior designs by taking advantage of
bidder information available to the auction designer through



constraints on the bidders’ type spaces. Our starting point
is the weakest-type (WT) auction, which is a type-space-
dependent improvement of VCG (Krishna and Perry 1998;
Balcan, Prasad, and Sandholm 2023). Our core-selecting
CAs build upon the WT auction, and minimize the sum of
bidders’ incentives to deviate from truthful bidding. They
generalize and improve upon the core-selecting CA de-
signs that have been developed in the literature so far, some
of which have been successfully used in spectrum auc-
tions (Day and Raghavan 2007; Day and Milgrom 2010;
Day and Cramton 2012; Erdil and Klemperer 2010).

1.1 Our Contributions

First, we show that information expressed by type spaces
can overcome the following well-known impossibility re-
sult due to Othman and Sandholm (2010) and Goeree and
Lien (2016): under unrestricted type spaces either (i) VCG
is not in the core in which case no IC core-selecting CA
exists or (ii) VCG is the unique IC core-selecting CA. In
general CAs where bidders’ valuations exhibit complemen-
tarities (that is, the value of a bundle is more than the sum
of its parts), VCG is typically not in the core. VCG is in
the core only under strict conditions on bidder valuations
that rule out complementarity (like buyer-submodularity or
gross-substitutes (Ausubel and Milgrom 2002)). We provide
a revised and more general version of the impossibility re-
sult. Our result (Theorem 3.1) states that either (i) WT is not
in the core in which case no IC core-selecting CA exists, (ii)
WT is the unique IC core-selecting CA, or (iii) there are in-
finitely many IC core-selecting CAs including WT (and we
characterize all such CAs). In particular, vanilla VCG has
no bearing on the existence of IC core-selecting CAs (when
type spaces are unrestricted VCG and WT are identical, so
our result recovers the one by Othman and Sandholm (2010)
and Goeree and Lien (2016) in that case).

Second, we devise a new family of type-space-dependent
core-selecting CAs that minimize the sum of bidders’ incen-
tives to deviate from truthful bidding. Typical core-selecting
CAs choose prices that lie on the minimum-revenue face—
referred to as the minimum-revenue core (MRC)—of the
core polytope (Parkes, Kalagnanam, and Eso 2001; Day and
Raghavan 2007; Day and Milgrom 2010; Erdil and Klem-
perer 2010; Day and Cramton 2012). Day and Milgrom
(2010) show that MRC points minimize bidders’ total in-
centive to deviate from truthful bidding (and therefore min-
imize incentives to deviate in a Pareto sense as well). Our
new design chooses core prices that minimize revenue sub-
ject to the additional constraint that they lie above WT. We
generalize Day and Milgrom’s result (which hinges on the
assumption of unrestricted typespaces), and show that our
revised version of the minimum-revenue core provides opti-
mal incentives for bidders.

Third, we develop new constraint generation routines for
computing WT prices. We compare two linear program-
ming formulations of WT price computation: one is due
to Balcan, Prasad, and Sandholm (2023) and the other is
based on Bikhchandani and Ostroy (2002). Both linear pro-
grams have an exponential number of constraints, so we de-
velop constraint generation routines to solve them. In our

experiments, the Balcan, Prasad, and Sandholm (2023) for-
mulation leads to significantly smaller constraint-generation
solve times and iterations. On most instances, WT price
computation via our constraint generation routine only adds
a modest run-time overhead to winner determination.

Finally, we present proof-of-concept experiments that
evaluate the incentive, revenue, and fairness properties of
our new core-selecting CAs. We coin and implement three
new core-selecting payment rules that select payments on
our revised MRC. Our implementation uses the quadratic
programming and core-constraint generation technique de-
veloped by Day and Cramton (2012).

Related Work In Appendix A, we survey additional re-
lated work on weakest types, equilibrium bidding strategies
in core-selecting CAs, core-selecting CA design and com-
putation, and core-selection beyond CAs.

2 Problem Formulation and Background

In a combinatorial auction (CA) there is a set M =
{1,...,m} of indivisible items to be auctioned off to bid-
ders N = {1,...,n} who can submit bids for distinct bun-
dles (or packages) of items. Bidder ¢ reports to the auc-
tion designer her valuation v; : oM R>( that encodes
the maximum value v;(.S) she is willing to pay for every
distinct bundle of goods S C M. Let v = (v1,...,v0y,)
denote the valuation profile of all bidders, and let v_; =
(U1, ..y Vi—1,Vit1,--.,Vs) denote the profile of bids ex-
cluding bidder ¢. For C C N let ve = (v;);ec and let
v_c = (vj)jen\c- We assume bidders report their valua-
tions in the XOR bidding language (Sandholm 1999; Nisan
2000), under which a bidder can only win at most one of the
bundles she explicitly placed a nonzero bid for. For bidder
i, let B; C 2M be the set of bundles she bid on (assume for
notational convenience that each bidder ¢ implicitly submits
v;(0) = 0).LetI' =T'(By,...,B,) C By x---x B, denote
the set of feasible allocations, that is, the set of partitions
S1,...,Sy of M with S; € B; foreachiand S; N S; = 0
for each i, j. Boldface S = (S1,...,S,) € I'(B1,...,By)
denotes a feasible allocation.

Before bids/valuations are submitted, bidder 7’s valuation
v;, also called her type, is her own private information. The
auction designer might have some prior information about
the bidders, and that is modeled by the joint type space
of the bidders, denoted ® C X,y R2';. The auction de-
signer knows that v € ©. Given v_;, let ©;(v_;) = {9; :
(9;,v_;) € O} be the projected type space of bidder i.
So, after seeing the revealed bids v_; of all other bidders,
the auction designer knows v; € ©;(v_;). This model of
type spaces begets a rich and expressive language of bid-
der information available to the auction designer—® can
represent any statement of the form “the joint valuation pro-
file v of all bidders satisfies property P (Balcan, Prasad,
and Sandholm (2023) provide concrete examples). The typ-
ical assumption in mechanism design is an unrestricted type
space ©® = X,y RQ;(; (what is usually assumed is the ex-
istence of a known prior distribution over the type space).
In contrast, we will be concerned with explicit representa-
tions of the auction designer’s knowledge via the type space



and how that influences both practical computation and the
auction design itself.

Auction design desiderata An auction is determined by
its allocation rule and its payment rule. In this paper we
are concerned with efficient auctions. An efficient auction
selects the efficient (welfare-maximizing) allocation: S* =
(S1s-..,5,) = argmaxger Y ;e n vj(S;). The winner de-
termination problem of computing the efficient allocation is
NP-complete (by a reduction from weighted set packing),
but solving its integer programming formulation is generally
a routine task for modern integer programming solvers. Let
w(v) = maxger ) e v v;(5;) denote the efficient welfare.
An auction is incentive compatible (IC) if each bidder’s util-
ity (value minus payment) is weakly maximized by truthful
bidding, independent of other bidders. An auction is individ-
ually rational (IR) if truthful bidders are always guaranteed
non-negative utility, independent of other bidders.

VCG and WT Auctions The classical auction due
to Vickrey (1961), Clarke (1971), and Groves (1973) (VCG)
chooses the efficient allocation S*, and charges bidder ¢

a payment of p/*°(v) = w(0,v_;) — 3>, v;(5;). Let
p'cc = (py°¢,...,pc¢) denote the vector of VCG pay-

ments. VCG is incentive compatible and individually ra-
tional. The weakest-type (WT) auction (Krishna and Perry
1998; Balcan, Prasad, and Sandholm 2023) chooses the effi-
cient allocation S* achieving welfare w(v) and charges bid-
der i a payment of pj"(v) = ming,ce,(v_,) w(Vi, v_;) —
> ;i vj(S57). The v; achieving the minimum is the weakest
typein ©;(v_;). Let p"* = (pf, ..., pl'") denote the vector
of WT payments. For ® closed and convex, WT is revenue
maximizing among all efficient, IC, and IR auctions (Kr-
ishna and Perry 1998; Balcan, Prasad, and Sandholm 2023).

Core-Selecting CAs and the Minimum-Revenue Core
Let W = {i € N : S # 0} be the set of winning bid-
ders in the efficient allocation S*. A combinatorial auction
is in the core if (i) it chooses the efficient allocation S* and
(ii) prices p € R™ lie in the core polytope Core(v), defined
by core constraints for every coalition of bidders

YiewrcPi = w(0ne,ve) = 30 vi(S;) VO C N

and IR constraints v;(S;) —p; > 0 Vi € W. This formu-
lation of the core gives rise to a direct interpretation of core
prices as “group VCG prices”: any set of winners must in
aggregate pay the externality they impose on the other bid-
ders (ours is not the typical formulation of the core, which
is a notion originally from cooperative game theory, but is
most convenient from an implementation/mathematical pro-
gramming perspective as in Day and Raghavan (2007); Day
and Cramton (2012); Biinz, Seuken, and Lubin (2015)).
The minimum-revenue core (MRC) is the set MRC =
argmin{||p||1 : p € Core} that consists of all core prices of
minimal revenue. Day and Raghavan (2007); Day and Mil-
grom (2010) show that the MRC captures exactly the set
of core prices that minimize the sum of bidders’ incentives
to deviate from truthful bidding. The MRC is not unique
and there can be (infinitely) many MRC prices. Some core-
selecting CAs that select unique MRC points that have been

proposed are VCG nearest (Day and Cramton 2012), which
finds the MRC point closest in Euclidean distance to VCG,
and zero nearest (Erdil and Klemperer 2010), which finds
the MRC point closest in Euclidean distance to the origin.

Since core-selecting CAs are in general not IC, a core-
selecting CA only guarantees that prices are in the revealed
core with respect to reported bids. But, from a regulatory
viewpoint, the revealed core is nonetheless a useful solution
concept since core constraints prevent any group of bidders
from lodging a meaningful complaint based on their actual
bids (Biinz, Lubin, and Seuken 2022).

3 Impossibility of IC Core-Selecting CAs

We revisit the following dichotomy for core-selecting CAs
when type spaces are unrestricted (Goeree and Lien 2016;
Othman and Sandholm 2010): either (i) VCG is not in the
core which implies no IC core-selecting auction exists or
(i1) VCG is in the core and is the unique IC core-selecting
auction. That dichotomy relies on the assumption that © is
unrestricted, that is, © = Ri’g. We revise and generalize that
result to depend on bidders’ type spaces. The proof (proofs
of all results in this paper are in Appendix F) relies on the
revenue optimality of WT prices subject to efficiency, IC,
and IR (Balcan, Prasad, and Sandholm 2023).

Theorem 3.1. Let © be closed and convex. Let v be the
vector of bidders’ true valuations. If p"*(v) ¢ Core(v), no
incentive compatible core-selecting CA exists. Otherwise, let
¢ C 2N be the set of core constraints that p"" satisfies with
equality. Let ¢ = {C" C N : C'nC = QpVC e ¢}
and for C" € € let s(C') = 3 ey o PiT — w(0,ver) +
> jecr vi(S5) be the slack of the C'-core constraint. Then
forany C' € & all prices in the set {(p{j o — €, p%\c,) :

lelly < s(C"),e € RYNC"} are in the core and are attain-
able via an incentive compatible CA.

Theorem 3.1 implies that if WT is in the core, there is a
potential continuum of IC core-selecting payment rules ob-
tained by decreasing WT prices along non-binding faces of
the core. In particular, the existence of IC core-selecting CAs
does not depend on VCG prices but on WT prices. WT and
VCG coincide when type spaces do not convey sufficient
information about the additional welfare created by a bid-
der: pi" = p/°¢ if and only if ming, ce,(v_,) W (i, v_;) =
w(0,v_;), which says that the information conveyed by
©;(v_;) about bidder i is so weak that it cannot even guaran-
tee that +’s presence adds any nonzero welfare to the auction.
In this case, Theorem 3.1 recovers the result of Othman and
Sandholm (2010) and Goeree and Lien (2016).

In Appendix B, we discuss a modified “agents-are-
substitutes” condition that characterizes when p"* € Core.

4 Our New Core-Selecting CAs

In this section we introduce our new class of core-selecting
CAs based on weakest types, and prove that it provides bid-
ders with optimal incentives (by minimizing the sum of bid-
ders’ incentives to deviate, therefore providing optimal in-
centives in a Pareto sense as well) among all core-selecting
CAs. Our result generalizes the result of Day and Milgrom



(2010) which was in the setting of unrestricted type spaces
(our result recovers theirs in the unrestricted case).

In Section 3 we have shown that if WT is not in the
core, then all core-selecting CAs necessarily violate incen-
tive compatibility. To measure the incentive violations of
a core-selecting CA, we borrow the notion of an incentive
profile from Day and Milgrom (2010). The utility profile
(resp., deviation profile) of an efficient CA with payment
rule p(v) is given by {ufgv)}iew (resp. {07 (v)}iew),
where ¢ (v) = maxg, (v;(S;) — pi(0;,v_;)) is bidder ¢’s
maximum obtainable utility from misreporting and 6¥ (v) =
P (v)— (vi(SF)—pi(vi, v_;)) is bidder i’s maximum utility
gain over truthful bidding (S denotes the efficient allocation
under reported bid profile (9;, v_;)). Our goal is to design
core-selecting payment rules p that minimize the sum of
bidders’ incentives to deviate, which is precisely >_. 67 (v).
The quantity 67 can be viewed as a form of ex-post regret
for truthful bidding for bidder ¢. Throughout this section, v
denotes the true valuations of the bidders.

The following lemma generalizes Day and Raghavan
(2007, Theorem 3.2); its proof is identical to theirs.

Lemma 4.1. Let p be any payment rule that implements
the efficient allocation such that p; > pI'™. Then, M? (v) <
v;(SF) — P (v) and 527-3(1)) < pi(v) — pI(v). That is, the
maximum utility winner i can obtain by misreporting under
P is no more than her utility under p"”.

The following result generalizes Day and Milgrom (2010,
Theorem 2).

Theorem 4.2. Let p be any IR payment rule that imple-
ments the efficient allocation such that p; > pl'". Let v} de-
note the misreport for winner i defined by v}(S}) = pI'* (v),
vi(S) = 0 forall S # S}. Then, v} is a best response for i
that gives her utility equal to v;(S}) — pI'™(v). That is, un-
der p, winner i can always guarantee herself utility equal to
what her utility would have been under p"”.

Theorem 4.2 allows us to characterize the subset of points
that minimize the sum of bidders’ incentives to deviate
of any upwards closed region. They are exactly the set
of points of minimal revenue. Given a price vector p €
RY and any closed region A C RY | let MR4(p) =
argmin{|lp|l1 :p € A, P <p < (v:(S]))icw} be the set
of IR price vectors in A of minimal revenue that lie above
p. Let MRC(p) = MRcore(p) denote the MRC above p.

Theorem 4.3. For A C RY upwards closed,
MR4(p") C argmin {3>°,.yy, 67 (v) : p € A} . Therefore,
MRC(p"(v)) C argmin {3}, 1y 67 (v) : p € Core(v)}.
Any payment rule p € MRC(p""(v)) is therefore in-
centive optimal in a Pareto sense as well: there is no other

core-selecting p’ such that 67 ‘(v) < 6% (v) for all i and

551,('0) < 6% (v) for some *. Theorem 4.3 generalizes
the results of Day and Raghavan (2007); Day and Milgrom
(2010) since when ©;(v_;) is unrestricted for each agent
i, MRC(p"") = MRC(p'“®) which is the (unrestricted)
minimum-revenue core they consider.

Theorem 4.3 gives strong theoretical justification for pay-
ment rules that lie on MRC(p""). We expand on specific

‘ p'“=(10,1010) —

Figure 1: Price vectors p“® and p"" (in red) and their

nearest respective minimum-revenue core points (in yel-
low, connected by a green line) as derived in Exam-
ple 4.4. MRC(p"") lies on a different face of the core than
MRC(pV¢®) and is of higher revenue.

rules in Section 6, but as one concrete example one of
the rules we coin—WT nearest—selects the price vector in
MRC(p"") that minimizes Euclidean distance to p"*. WT
nearest is the most direct generalization of the VCG nearest
rule proposed by Day and Cramton (2012) that has been suc-
cessfully used in spectrum auctions. In order to implement
rules like WT nearest, we need algorithms for computing
p"T. That is the topic of the next section (Section 5). We
conclude this section with an example illustrating some of
the key concepts introduced so far.

Example 4.4. Consider the CA with three items {a, b, c}
and 10 single-minded bidders who submit the following
bids: vi(a) = 20, va(b) = 20, vz(c) = 20, vy(ab) = 28,
vs(ac) = 26, vg(bc) = 23, vr(a) = 10, vg(b) = 10,
vg(c) = 10, vig(abe) = 41 (this a slight modification of
an example from Day and Cramton (2012)). Bidders 1, 2,
and 3 win in the efficient allocation and their VCG prices
are p’“¢ = (10,10,10). Say ©; = R>(,02 = {va(b) >
17},05 = {vs(c) > 15}, so p"* = (10,17,15). The
core constraints are given by {p1,p2,p3 > 10,p1 + p2 >
28,p1 +p3 > 26,p2 +p3 > 23,p1 + p2 +p3 > 41}
The vanilla VCG-nearest point of Day and Cramton (2012)
on MRC(p¥“€) is (14, 14, 13) and the WT-nearest point on
MRC(p"™) is (11,17,15). Figure 1 illustrates this example.

5 Computing Weakest-Type Prices

In this section we develop techniques to compute p"*, which
are needed as a subroutine for computing the payments of
our new core-selecting CAs. Balcan, Prasad, and Sandholm
(2023) provide an initial theoretical investigation of WT
computation, and our approaches builds upon their formu-
lation, but we are the first to develop practical techniques
and evaluate them via experiments. Appendix C contains the
needed background on winner determination.

Recall B; C 2M is the set of bundles bidder i bids on, so,
for each S € B;, bidder j submits her value v;(,S) which
is the maximum amount she would be willing to pay to win



bundle S. For B = (By,..., By,), I'(B) denotes the set of
feasible selections of winning bids.

5.1 Constraint Generation for WT Computation

Let B; denote the set of bundles S; such that v;(S;) is con-
strained by ©;(v_;) (so if ©;(v_;) is explicitly represented
as a list of constraints on v;, B; is the set of bundles .S; such
that v;(S;) appears in one of those constraints). WT compu-

tation for bidder ¢ is the minmax optimization problem
Ming, o, (v_,) MXger (5, p_,) VilS) + 2 jeni V5 (55);

which can be expressed as a pure minimization problem
by enumerating the set of feasible allocations I in its con-
straints and adding an auxiliary scalar variable ~ to upper
bound those constraints (adapting the formulation in Balcan,
Prasad, and Sandholm (2023)). The resulting mathematical
program is

. 03(5i) + 22,2, vi(9) <7 VS € I(B;, B_;)

minqy: .
v; € O; (U,i)

In constraint generation, we initialize the program with some

restricted set of constraints corresponding to feasible alloca-

tions I'y C I'(B;, B_;) and solve to get a candidate solu-
tion 7, v;. Next, we find the most violated constraint not cur-
rently in I'g by computing w(v;, v_;) and comparing to 7.
If ¥ — w(v;,v—;) < 0 we have found a (most) violated con-
straint, and we add the constraint corresponding to the vi-

olating allocation (§1, cee §n) that solves w(v, v_;) to the

restricted pricing LP (that is, I'g +— I'gU {§ 1. The program
with the additional constraint is resolved and the process it-
erates. Otherwise if ¥ — w(v;,v_;) > 0, all constraints of
the unrestricted program are satisfied and so 7, v; is an opti-
mal solution to the program and constraint generation termi-
nates. (Experiments presented in Appendix D show that the

above approach is superior to an alternate formulation based
on Bikhchandani and Ostroy (2002).)

6 Experiments

We ran experiments to evaluate revenues, incentives, fair-
ness, and computation of our new core-selecting CAs. We
describe the main components of the setup below.

New and old core-selecting CAs For a given CA instance
we compare five different core-selecting payment rules (the
three new CAs we introduce in this work are bolded): Vanilla
VCG nearest (Day and Cramton 2012) and Vanilla zero
nearest (Erdil and Klemperer 2010) are the points p €
MRC(p"®) that minimize ||p — p"°¢||3, and ||p||3, respec-
tively; WT nearest, Zero nearest, and VCG nearest are the
points p € MRC(p"?) that minimize ||p — p"*||3, ||p||3, and
llp — pV°€||3, respectively. The WT-nearest rule is the most
direct generalization of the vanilla VCG-nearest rule pro-
posed by Day and Cramton (2012) and the zero-nearest rule
is the most direct generalization of the vanilla zero-nearest
rule proposed by Erdil and Klemperer (2010). Each of the
five price vectors is computed via the quadratic program-
ming and core-constraint generation techniques developed
by Day and Cramton (2012), detailed in Appendix E.

Type space generation For each CA instance, we gener-
ated synthetic bidder type spaces ©;(v_;) determined by
linear constraints (so the formulations for WT price com-
putation from Section 5 are LPs). We generated ©;(v_;)
independently for each bidder by generating K random lin-
ear constraints according to parameter 3 as follows. Each
constraint is of the form » ¢ p X(Si)c(S:)vi(Si) > a -
>.s,en, X (Si)c(Si)vi(S;) where v;(S;) are the variables
representing bidder ’s bids, each X (S;) is an independent
Bernoulli 0/1 random variable with success probability £,
each ¢(S;) is drawn uniformly and independently from a de-
cay distribution where ¢(S;) is initially equal to 1 and is re-
peatedly incremented with success probability 0.2 until fail-
ure, and « is drawn uniformly at random from [1/2, 1]. So,
each constraint is guaranteed to be satisfied by the actual
bids, and « determines how close to tight it is. Each of the K
constraints per-bidder is generated this way independently.

We wused the Combinatorial Auction Test Suite
(CATS) (Leyton-Brown, Pearson, and Shoham 2000)
version 2.1 to generate CA instances. Like Day and Ragha-
van (2007) and Day and Cramton (2012), we generated
each instance from a randomly chosen distribution from the
seven available distributions meant to model real-world CA
applications. Code for our experiments was written in C++
and we used Gurobi version 12.0.1, limited to 8 threads,
to solve all linear, integer, and quadratic programs. All
computations were done on a 64-core machine with 16GB
of RAM allocated for each CA instance.

Run-time cost of WT computation Table 1 records the
effects of varying 8 € {0.2,0.5,0.8} (which controls the
sparsity of type space constraints) on the run-time and num-
ber of CG iterations to compute p"*. We fixed the number
of constraints K = 8, and for each § and each setting of
goods in {64, 128} and bids in {250, 500} generated 100 in-
stances (for a total of 400 instances). For these instances, the
(geometric) mean run-time and worst-case run-time for p*“¢
were 2.7 seconds and 608.5 seconds, respectively.

3 Run-time | CGiters | Run-time | CG iters
(GM) (GM) (Max) (Max)

0.2 9.9 32.0 1515.1 424
0.5 13.2 56.4 1610.0 536
0.8 15.3 75.3 1896.0 567

Table 1: Run-times and constraint generation iterations for
the BPS formulation as § varies, with # goods € {64, 128}
and # bids € {250,500}, averaged over 100 instances for
each (3 and each setting of goods/bids.

The worst run-time for WT computation was thus roughly
3.1x the worst run-time for VCG computation. In general,
increasing (3, which increases the density of the type space
constraints, increases the cost of WT computation. The ad-
ditional run-time cost for finding a MRC(p"") via core-
constraint generation was in fact less expensive than the
run-time of core-constraint generation to find vanilla MRC
points. The geometric mean runtime of the vanilla VCG
nearest rule of Day and Cramton (2012) on the above in-
stances was 1.7 seconds, with a worst case run-time of 523.9
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Figure 2: Incentive effects as type spaces convey more
information (by varying the number of constraints K &
{1,2,4,8,16}, with # goods € {64,128} and # bids €
{250,500, 1000}, averaged over 100 instances for each K
and each setting of goods/bids.

seconds. The geometric mean of our WT nearest rule on the
same instances was 1.0 seconds, with a worst case run-time
of 475.0 seconds. So, the main run-time cost of our new
core-selecting CAs is in computing p"~.

Varying the number of type space constraints K did not
have a significant impact on run-time nor number of con-
straint generation iterations for WT computation. Over all
CA instances with number of goods in {64,128} number
of bids in {250,500, 1000}, and 8 = 0.3, the geometric
mean of run-times over all K was 19.7 seconds and the ge-
ometric mean of constraint generation iterations was 42.7.
The worst-case VCG run-time was 19545.2 seconds and the
worst-case WT run-time was 47718.0 seconds (2.4 x larger
than the worst VCG run-time). (The significantly larger run-
time relative to the previous experiment varying [ is due to
the inclusion of the the CAT'S instances with 1000 bids.)

Incentive and revenue effects We now discuss the impact
of type space information on the sum of bidders’ incentives
to deviate from truthful bidding in a MRC(p"")-selecting
CA. That is, we record the quantity >,y 6¥ where p is
any one of our new core-selecting CAs. By Theorem 4.2 this
isequal to ),y ps —pj", that is, the difference in revenue
between the MRC(p"")-selecting rule and WT. We track this
quantity as the number of type space constraints K per bid-
der varies in {1,2,4,8,16}, and compare it to the sum of
bidders’ incentives to deviate in the vanilla unrestricted set-
ting, which by Day and Milgrom (2010) is equal to the dif-
ference in revenue between a MRC(pV¢®)-selecting rule and
VCG. Each revenue difference recorded on the y-axis of Fig-
ure 2 is averaged over 100 CA instances each for goods in
{64,128} and bids in {250, 500, 1000}, for a total of 600
CA instances and a total of 600 x 5 = 3000 type space
instances/WT computations. We fixed the constraint spar-
sity parameter 3 = 0.3. Figure 2 shows a clear trend that
more information about the bidders (in the form of more
type space constraints) yields better core incentives—and
vastly better incentives than a vanilla MRC-selecting rule.
On the revenue front, Figure 3 shows the impact of
more informative type spaces on the revenues generated
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Figure 3: Revenue effects as type spaces convey more in-
formation (by varying the number of constraints K &
{1,2,4,8,16}, with # goods € {64,128} and # bids €
{250,500, 1000}, averaged over 100 instances for each K
and each setting of goods/bids.

by our new core-selecting CAs (the experimental setup is
the same as in the previous paragraph). The MRC(p")-
selecting rules are the clear winner, nearly closing half the
gap between MRC revenue and the efficient social wel-
fare when type spaces are determined by K = 16 con-
straints. While the MRC(p"") revenue is not significantly
larger than the MRC revenue for K < 8, WT’s revenue is
much larger than VCG’s, leading to much better incentives
for the MRC(p"") rule than the MRC rule in that regime de-
spite similar revenues. So, a MRC(p"T)-selecting rule with
revenue not much larger than a vanilla MRC(pV®)-selecting
rule can still provide significantly better incentives for bid-
ders if | p""||; is much larger than ||p"“||;.

How often is WT in the core? We now report on the
frequency with which p"* € Core. For CA instances with
this property, all MRC(p"")-selecting rules return p"* un-
modified. Here, we record the frequency as the number of
type space constraints K varies (the setup is the same as
those in Figures 2 and 3). For K = 1,2,4,8,16, the fre-
quencies with which p'“¢ ¢ Core A p"* € Core were
2.00%, 3.02%, 3.36%, 3.69%, and 4.18%, respectively.
Additionally, 1.17% of all instances had the property that
both VCG and WT were in the core, both generating nonzero
revenue An interesting phenomenon we observed was that
7.5% of instances had the property that all vanilla MRC-
selecting rules (like vanilla VCG-nearest of Day and Cram-
ton (2012) and vanilla zero-nearest of Erdil and Klemperer
(2010)) generated zero revenue. In other words, VCG gener-
ates zero revenue yet is in the core, which is a worse situation
than the zero revenue cases described by Ausubel, Aperjis,
and Baranov (2017) and Ausubel and Baranov (2023) that a
vanilla core-selecting rule is unable to fix. WT is therefore
indispensable to generate any revenue in these cases.

Who shoulders the core burden? In Day and Cramton
(2012), the impact of core pricing on the highest and low-
est bidder is visualized. They show that on CATS instances
with few bids (100 or less), their vanilla VCG nearest rule
provides a more equitable apportionment of the core bur-
den than the vanilla zero nearest rule of Erdil and Klemperer
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Figure 4: Core burdens shouldered by the lower and upper
halves of bidders (measured by winning bid value). For the
three MRC(p"7)-selecting rules, the left and right bars dis-
play the core burden split relative to WT and VCG, respec-
tively. For the two vanilla MRC-selecting rules, the bar dis-
plays the core burden split relative to VCG.

(2010). That trend is less pronounced for the numbers of bids
that we consider (250, 500, and 1000), and hence we present
a slightly different visualization of the core burden split.

For each CA instance, and each core-pricing rule p,
the core burden relative to WT (resp. VCG) of bidder ¢
is the quantity (p; — pj")/ (O ,cw pi — pi ') (resp. (p; —
7€)/ (> icw pi —pi<¢)). We sorted the bidders in ascend-
ing order of winning bid v;(S}), and summed up the total
core burdens for the lower and higher halves of bidders.
Figure 4 displays the splitting of core burdens between the
lower and higher halves, averaged across all instances with
K = 8. For VCG-nearest, WT-nearest, and zero-nearest, the
left bar displays core burdens relative to WT, with the solid
black bottom representing the lower half of bidders and the
gray top representing the upper half. The right bar displays
core burdens relative to VCG, with the darker gray bottom
representing the lower half of bidders and the lighter gray
top representing the upper half. Only the core burden relative
to VCG is displayed for the vanilla VCG nearest (Day and
Cramton 2012) and vanilla zero nearest (Erdil and Klem-
perer 2010) since it would not make sense to compute core
burdens relative to WT for these rules. Overall, there was not
a significant difference between WT-nearest, zero-nearest,
and VCG-nearest (this was also the case in Day and Cram-
ton (2012) in their comparison of vanilla VCG-nearest and
vanilla zero-nearest on CATS instances with more than 250
bids). VCG-nearest placed the least core burden and zero-
nearest placed the greatest core burden on the lower half of
bidders, and all three rules are similar to the vanilla MRC
rules in terms of core burdens relative to VCG. This fact pro-
vides further validation for our MRC(p"")-selecting rules as
they do not unfairly skew the core burden apportionment.

The previous discussion of equitable sharing of the core
burden begets the question of whether there exist core-
selecting rules that explicitly enforce how the core bur-
den should be split. For example, is there a MRC(p"?)-
selecting CA p that enforces that each bidder pays a core
burden in exact proportion to their winning bid, that is,

(P =)/ Qicw Pi = i) Z a-vi(S7) /(X cw vi(S7))
for some «? The answer is no due to the asymmetric infor-
mation that can be conveyed about bidders by type spaces.
For example, if ©1(v_1) = {v1}, s0 p{* = v1(S}), IR con-
straints force p; = p§’ for any core-selecting p. So in such
situations a low bidder might be forced to shoulder a large
majority of the core burden. A general rule of thumb here
appears to be that the bidders with type spaces that convey
the least information about them must pay most of the core
burden. A formal investigation of this idea is an interesting
direction for future research.

7 Conclusions and Future Research

We presented a new family of core-selecting CAs that take
advantage of bidder information known to the auction de-
signer through bidders’ type spaces. We showed that suf-
ficiently informative type spaces can overcome the well-
known impossibility of core-selecting CAs, and gave a re-
vised and generalized impossibility result that depends on
whether or not the WT auction is in the core. We then
showed that our new family of core-selecting CAs, defined
by minimizing revenue on the section of the core above WT
prices, minimizes the sum of bidders’ incentives to deviate
from truthful bidding. On the computational front, we de-
veloped new constraint generation techniques for comput-
ing WT prices and evaluated our new core-selecting CAs
on CATS instances, with synthetic generators for type space
constraints. The revenue and incentive benefits of our new
CAs, along with their manageable computational overhead,
make them a useful addition to the auction design toolkit.

Future research Perhaps the most pressing direction is
the development of realistic type space generators by incor-
porating the specific details of the application domain. Our
new CAs display promise on our synthetically-generated
type spaces, but to understand their viability in real-world
auctions one must develop detailed models of auctioneer
knowledge. A more thorough investigation is needed for
the design of MRC(p"?)-selecting rules. There might be
other more economically meaningful rules than the ones
we introduced in this paper. A computational study extend-
ing Biinz, Lubin, and Seuken (2022) to MRC(p"")-selecting
rules is relevant here as well. A promising direction along
this vein is to use machine learning to design the reference
point, weights, and amplifications of the parameterized rules
in Biinz, Lubin, and Seuken (2022). Explicit equilibrium
analysis in the style of Goeree and Lien (2016) and Ausubel
and Baranov (2020) is important as well. Finally, an impor-
tant direction within the research strand of mechanism de-
sign with predictions (Balcan, Prasad, and Sandholm 2023;
Balkanski, Gkatzelis, and Tan 2024) is to relax the assump-
tion that v € @, that is, that type spaces convey correct in-
formation about bidders. How can core-selecting CAs with
strong incentive properties be designed using the techniques
developed in this paper when type spaces can have errors?
The techniques developed in Balcan, Prasad, and Sandholm
(2023) in the general setting of multidimensional mecha-
nism design will likely be useful here, and can also help shed
light on better core selection in mechanisms beyond CAs.
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A Additional Related Work

Weakest types The notion of a weakest type consistent with an agent’s type space originates from the seminal works of My-
erson and Satterthwaite (1983) and Cramton, Gibbons, and Klemperer (1987) in the context of efficient trade. It was first
presented in an auction context by Krishna and Perry (1998), and later modified by Balcan, Prasad, and Sandholm (2023) to
derive revenue guarantees that depend on measures of informativeness of the type space (it has been further generalized for
completely general type spaces by Prasad, Balcan, and Sandholm (2025)). Balcan, Prasad, and Sandholm (2025) show how to
learn weakest types from data. The weakest-type auction has found applications in other mechanism design settings (like digital
goods auctions) as well (Lu, Wan, and Zhang 2024).

Equilibrium bidding strategies in core-selecting CAs As core-selecting CAs are not generally incentive compatible, there
is a sizable literature that studies bidding strategies and equilibrium outcomes in core-selecting CAs. Such work has generally
been limited to very small CA instances with numbers of items and bidders both in the single digits. Goeree and Lien (2016)
derive equilibrium strategies for the core-selecting CA of Day and Cramton (2012) and show that revealed core prices can be
further away from the frue core than VCG. Ausubel and Baranov (2020) are more optimistic and demonstrate the opposite
phenomenon, providing more justification for the use of core-selecting CAs in practice. Bichler, Shabalin, and Wolf (2013)
run lab experiments to study bidding behavior and efficiency of the core-selecting combinatorial clock auction format. Ott and
Beck (2013) study overbidding equilibria that can arise in core-selecting CAs.

Core-selecting CA design and computation Erdil and Klemperer (2010) introduce the idea of using “reference points” other
than VCG (Day and Cramton 2012) to find closest MRC prices. Biinz, Lubin, and Seuken (2022) perform a computational
evaluation of different core-selecting payment rules that differ in their underlying reference point. Their focus is on computing
equilibrium bidding strategies (using modern Bayes-Nash equilibrium solvers (Bosshard et al. 2017)) to evaluate true efficiency,
and therefore their evaluation is limited to very small auction instances. These works study the properties of different core points
that lie on the same minimum-revenue core. We redefine the minimum-revenue core to depend on the type space information
known to the auction designer.

Biinz, Seuken, and Lubin (2015) provide improvements to the original core-constraint generation algorithms of Day and
Raghavan (2007) and Day and Cramton (2012). Niazadeh et al. (2022) develop non-exact algorithms that converge to core
prices (though their experimental evaluation is in a not-fully-combinatorial advertising setting where winner determination is
in P, in contrast to the general CA setting where winner determination is NP-complete). Generalizing their algorithms to take
advantage of type space information is an interesting direction for future research. Goel, Khani, and Leme (2015); Markakis
and Tsikiridis (2019) devise incentive compatible CAs that approximate the core revenue. A drawback of this line of work is
that it sacrifices efficiency, which is one of the main tenets that motivates the need for core-selecting CAs in the first place.
Goetzendorff et al. (2015) design new bidding languages for auctions with many items and respective techniques for core
pricing; Moor et al. (2016) study core-selecting auctions when some items might no longer be available after the auction is run;
Othman and Sandholm (2010) develop an iterative core-selecting CA that elicits bids over multiple rounds.

Core selection beyond CAs Some work has studied the design of core-selecting mechanisms in markets beyond auctions.
Examples include combinatorial exchanges (Rostek and Yoder 2015; Bichler and Waldherr 2017), reallocative mechanisms
like the FCC incentive auction (Rostek and Yoder 2025), and markets with financially-constrained buyers (Batziou, Bichler,
and Fichtl 2022; Bichler and Waldherr 2022).

B Agents-are-Substitutes Condition
In the setting where type spaces are unrestricted, that is, @ = X,y RZJOL, the agents-are-substitutes condition (Ausubel and

Milgrom 2002; Bikhchandani and Ostroy 2002; Parkes 2002) characterizes exactly when VCG prices are in the core. That
condition is defined as follows: valuation profile v satisfies the agents-are-substitutes condition if

w(v) —w(0c,vye) > Y (w(v) —w(0,v_;)) VC CN.
e

The quantity w(v) —w(0,v_;) is precisely agent i’s VCG utility, so VCG is in the core if and only if the agents-are-substitutes
condition holds. Replacing the terms in the summation with agent ’s WT utility instead, which is the quantity

w(v) — min  w(v;,v_;
( ) V;€0;(v_;) (“ l)

yields a modified agents-are-substitutes condition that characterizes exactly when p"* € Core.



C Background on Winner Determination Formulations
The standard integer programming formulation of winner determination involves variables x;(.S) indicating whether bidder j

is allocated bundle S
Y zS)<1vieM
jEN SeB;,5i
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The first set of constraints ensures that no item is over-allocated and the second set of constraints ensures that each bidder has
at most one winning bid. This formulation is the de facto method for computing efficient allocations in practice, and is the
formulation we use when solving winner determination problems in experiments.

Winner determination can also be formulated as the following linear program (LP) due to Bikhchandani and Ostroy (2002)
(see also de Vries, Schummer, and Vohra (2007)). The linear program explicitly enumerates all possible feasible allocations of
the items and has the property that its optimal solution is integral. It involves variables x;(.S) indicating whether bundle S is
allocated to bidder j and variables §(.S) indicating whether feasible allocation S € T is chosen:

z(S)< Y. 6(S) VjeN,SeB;
Ser:s;=5
Y wi(S)<1VjeN
max v;(8)z;(S) : S€8
j;vs%;j T Y as) <1 [y

Ser
I](S) ZO VJEN,SGBJ
5(8)>0VSerl

The first set of constraints ensures that winning bids are consistent with the bundles in the efficient allocation, the second set
of constraints ensures that each bidder has at most one winning bid, and the third constraint ensures that only one efficient
allocation is chosen. The corresponding dual variables are boxed following the respective primal constraint. The dual LP is
given by (with the corresponding primal variables boxed)

T > ’Uj(S) —pj(S) Vj e N,S € Bj
i Z”ﬁ*“szwszzpj(sj) VS eT [4(S)

JEN _
JEN

and has a constraint for every possible feasible allocation S € T'. By strong duality, its optimal objective value is also w(v).
The dual variables p;(.S) have the natural interpretation of non-additive non-anonymous bundle prices that support the efficient
allocation computed by the primal, with 7; representing bidder j’s utility and 7 the seller’s revenue (Bikhchandani and Ostroy
2002; de Vries, Schummer, and Vohra 2007), though in general these do not coincide with VCG prices (Bikhchandani et al.
(2001) provide an in depth exploration of the connections between LP duality and VCG prices).

D Alternate Formulation for WT Computation based on Bikhchandani and Ostroy (2002)

The mathematical program for computing the pivot term in bidder ¢’s WT price pl'" based on the dual LP of the Bikhchandani
and Ostroy (2002) formulation is:

™ > 51(S) —pi(S) VS e éi
Ui > ’Uj(S) —pj<S) Vj e N\Z,S S Bj

min Z Uy + 7 Ts > ij(sj) VS e F(Ei;B—i) ' (BO)
JEN JEN
v; € O;(v_;)

Ithas |B;| + 3 ji |Bj| +n+1 variables while the BPS formulation has | B;| + 1 variables. In constraint generation, we solve
a restricted BO program over an initial set of feasible allocations I'y (replacing the third set of constraints) and get a candidate
solution v;, (7;), 75, (P;(S)). To find the most violated constraint we solve winner determination where bidders’ bids are given



by the values of the supporting prices p;(.5) and compare the value to the seller’s revenue 7. If 7, — w(p) < 0 the constraint

-~

corresponding to the feasible allocation S' that solves w(p) is (most) violated. So, we add that constraint to the restricted BO
program and iterate. Else if 75 — w(p) > 0 all BO constraints are satisfied, and our candidate solution is optimal so constraint
generation terminates.

D.1 Comparison of the Balcan-Prasad-Sandholm (BPS) and Bikhchandani-Ostroy (BO) Formulations

We implemented constraint generation on both the BPS and BO formulations where the type spaces ©;(v_;) were generated
independently at random for each bidder. Each type space ©;(v_;) was determined by 8 randomly generated linear constraints
(so both the BPS and BO formulations were linear programs) that were consistent with bidder ¢’s actual bids (we defer the
specific details of how we generated CA instances and respective bidder type spaces to Section 6). For both formulations, we
initialized the starting set of allocations I'y with only the efficient allocation S*.

Run-times and total number of constraint generation iterations to compute p"* are reported in Table 2. Constraint generation
on the BPS formulation was significantly faster and required far fewer iterations than the BO formulation. On an instance-
by-instance basis, the BPS formulation was faster and cheaper than the BO formulation on 100% of CA instances. In all
experiments reported in the following section (Section 6), we therefore only ran constraint generation on the BPS formulation
for all WT computations.

BPS BO
) Run-time | Run-time | CGiters | CGiters | Run-time | Run-time | CGiters | CG iters
Goods/Bids 1 G (GSD) (GM) | (GSD) | (GM) (GSD) | (GM) | (GSD)
64/250 4.0 2.3 25.6 2.4 7.3 2.3 58.2 2.5
64/500 94 2.9 45.8 3.1 20.8 2.8 102.5 2.6
128/250 8.5 3.2 42.2 2.5 17.6 2.9 110.3 24
128/500 46.9 6.3 59.8 2.9 110.6 5.8 164.2 2.4

Table 2: Geometric mean (GM) and standard deviation (GSD) of run-times (in seconds) and number of constraint generation
(CQG) iterations for the BPS and BO formulations, varying the number of goods and bids, averaged across 100 instances for
each good/bid setting.

Remark A further advantage of the BPS formulation is that it can generally be applied to any multidimensional mechanism
design problem, and the constraint generation works as long as one can formulate and solve the separation problem (winner
determination) in a tractable way. The BO formulation is specific to combinatorial auctions.

E Core-Constraint Generation

Here we describe at a high level the core-constraint generation routine developed by Day and Raghavan (2007); Day and
Cramton (2012). Details can be found in Day and Cramton (2012). Given an input reference point p*©*, the goal is to find the
point p € MRC(p"?) that minimizes ||p — p*¢||3. Let QP(r) denote the quadratic program

13

min {|p — p :p € Core,p > p"*, ||p|lL = r}

and let LP denote the linear program
min {[|p|l, : p € Core,p > p""}.

Core constraints make both formulations too large to represent explicitly, and hence they are solved with constraint generation.
First, solve restricted LP with some initial set (possibly empty) of core constraints; let 7 be the optimal objective. Then, solve
restricted QP(7) with the same initial core constraints, and let p be the optimal solution. To find the most violated core con-
straint, solve an auxiliary winner determination where all bids by winner ¢ are reduced by their opportunity cost v;(S}) — p;.
If the optimal winner determination value/efficient welfare is more than the current QP revenue ||p||1, the core constraint cor-
responding to the set of winners in the auxiliary winner determination is violated. Add that constraint to the restricted LP and
QP, resolve LP to get an updated 7, solve QP(7), and iterate. (The revenue-minimization LP is needed to ensure that we find
the closest point to p**f on MRC(p""). Without that we might find a closer point, but it will be outside the minimum-revenue
core and therefore not minimize the sum of incentives to deviate.)

F Omitted Proofs

Proof of Theorem 3.1. If p"* ¢ Core(v), it must be the case that for any p € Core(v) there exists ¢ such that p; > p¥. This
means no IC core-selecting CA can exist because p"T is bidder-wise payment optimal subject to efficiency, IC, and IR (Balcan,
Prasad, and Sandholm 2023).



If p"* € Core(v), the price vector (Pyyncr — & Py () is also in the core for any e with |[e]|y < s(C”) by construction.
We now argue that there exists an IC auction that yields these prices. Consider the efficient Groves mechanism that uses pivot
terms

hi(v_i) =t;- w(O,'v_i) + (1 — ti) - min w(@-, ’U_i)
V,€0; (’U_i)
where t; € [0,1] is a parameter that does not depend on i’s revealed type v;. Such a Groves mechanism is IC and, since it
produces payments between VCG and WT, IR. By continuity, there exist parameters ¢ = ((¢;)icwnc-, 0) so that the Groves
mechanism produces prices (P — €, p%\c,). O

Proof of Lemma 4.1. Suppose for the sake of contradiction that there is a misreport v} for bidder 4 that gives her utility more
than v;(S}) —p]™ (v), that is, v;(S]) —p; (v}, v—;) > v;(S}) —pI" (v) where S” is the efficient allocation for bid profile (v}, v_;).
Since p; > piT, v;(S]) — P (v, v—_;) > v;(S]) — pi(v}, v_;), which, combined with the above, yields v;(S;) — p¥* (v}, v_;) >
v;(SF) — pI'" (v). Incentive compatibility of WT is violated, a contradiction. O

Proof of Theorem 4.2. Reporting v, does not change the efficient allocation since pi" > p?“® (and i’s VCG price is her lowest
possible misreport that preserves her winning bundle). So, the IR constraint for p requires v} (SF) — p; (v}, v_;) > 0. Expanding
the left-hand side yields v;(S}) — ps (vj, v_;) = pi* (v) — Pi(vj, v—;) = v(S}) — (w(vs, v_;) — Ming,ce, (v_,) W(Vi, V_;)) —
Pi(vi, v_i). S0, v;(S]) —pi (v, v—s) > w(vi, v_;) —ming, ceo, (v_,) w(Vi, v_;). The right-hand side is precisely 4’s utility under
p"T. By Lemma 4.1, this constitutes a best response. O

Proof of Theorem 4.3. Consider the map on pricing rules p — p’ defined by

/ ~[pi(v)  pi(v) > piT(v)
Pilv) = {pzw(v) pi(v) < pT(v).

This map satisfies the property that (55’/ (v) < 6P (v) since if p;(v) > p*(v), p; is unchanged, and otherwise the WT price

is used for which 6fWT (v) = 0 due to incentive compatibility. So, for any price vector p € A such that p # p"”, the described
map produces p’ such that p’ € A (since A is upwards closed), p’ > p"*, and p’ has deviation profile no worse than p. It
therefore suffices to consider the subset of A that lies above p"* to find prices in .A that minimize the sum of bidders’ incentives
to deviate. For p > p"* we have 67 (v) = p;(v) — p!'* (v) by Theorem 4.2. So minimizing Y, 67 is equivalent to minimizing
>, Pi» which completes the proof. O



