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Abstract

The design of multi-item, multi-bidder auctions involves a
delicate balancing act of economic objectives, bidder incen-
tives, and real-world complexities. Efficient auctions, that is,
auctions that allocate items to maximize total bidder value,
are practically desirable since they promote the most eco-
nomically beneficial use of resources. Arguably the biggest
drawback of efficient auctions, however, is their potential to
generate very low revenue. In this work, we show how the
auction designer can inject competition into the auction to
boost revenue while striving to maintain efficiency. First, we
invent a new auction family that enables the auction designer
to specify competition in a precise, expressive, and inter-
pretable way. We then introduce a new model of bidder be-
havior and individual rationality to understand how bidders
act when prices are too competitive. Next, under our bidder
behavior model, we use our new competitive auction class
to derive the globally revenue-optimal efficient auction un-
der two different knowledge models for the auction designer:
knowledge of full bidder value distributions and knowledge
of bidder value quantiles. Finally, we study a third knowl-
edge model for the auction designer: knowledge of historical
bidder valuation data. In this setting we present sample and
computationally efficient learning algorithms that find high-
revenue probably-efficient competitive auctions from bidder
data. Our learning algorithms are instance adaptive and can
be run in parallel across bidders, unlike most prior approaches
to data-driven auction design.

1 Introduction
The design of combinatorial auctions is an intricate prob-
lem spanning theory and practice. We study the design of
competition in efficient (welfare-maximizing) combinatorial
auctions. Efficiency in large high-stakes auctions is impor-
tant. For example, Cramton (2013) advises countries to fo-
cus on efficiency in spectrum auctions since that will yield
the best and most competitive use of the allocated resources,
leading to higher long-term revenues and an overall better
economic state. The classic efficient auction for multi-item
settings is the Vickrey (1961)-Clarke (1971)-Groves (1973)
(VCG) auction, but VCG is rarely used in practice due to
its unacceptably low revenue. We introduce a new class of
auctions that augment VCG prices with auctioneer-specified
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levels of competition. We show that this new auction class
offers the flexibility and expressive power to meaningfully
boost revenue under three different auctioneer knowledge
models: (i) knowledge of full bidder valuation distributions,
(ii) knowledge of bidder valuation quantiles, and (iii) knowl-
edge of historical bidder valuation data.

Our primary research question is: how can the auction
designer use additional knowledge to boost revenue via en-
hanced competition while striving to run an efficient auc-
tion? If efficiency, incentive compatibility (IC) (each bidder
is weakly best off bidding her true values no matter how
other bidders act), and individual rationality (IR) (each bid-
der is motivated to participate in the auction via a guarantee
of non-negative utility) are constraints of the auction design,
the weakest-competitor VCG (WCVCG) auction of Balcan,
Prasad, and Sandholm (2023) is revenue optimal. So, a more
competitive auction that implements the efficient allocation
and attempts to boost revenues beyond WCVCG necessar-
ily runs the risk of determining that a bidder should pay
more than her winning bid price. Such a bidder could re-
spond in one of two ways to that situation. She could decline
the offer, which would force the auctioneer to keep her win-
ning items unsold and result in an economically inefficient
allocation. But if the overcharge is not too significant, she
might accept the offer—violating her individual rationality
constraint—leading to the efficient allocation to be realized.
In both cases an economically desirable aspect of the auc-
tion design is compromised: either the auctioneer settles for
a less-than-efficient allocation, or the auctioneer accepts that
a bidder was overcharged (potentially eroding bidder trust
and opening the door for further unwanted negotiation). We
model this behavior, design new kinds of competitive auc-
tions that are sensitive to this behavior, and show how those
auctions can increase revenue without violating individual
rationality nor efficiency too frequently.

Summary of Contributions and Related Work
Competitive VCG auctions We introduce a new family of
auctions, f -VCG auctions, that gives the auction designer
the expressive ability to specify precisely, for each bidder,
an artificial competitor to drive competitive prices. These
auctions have the feature that the auction parameters for a
bidder—her competitor—can depend on the revealed bids
of all other bidders.



Bidder behavior and individual rationality We intro-
duce a model of bidders who are amenable to being over-
charged past their winning bid price: a(p, κ) is the probabil-
ity that a bidder who bid p for a particular bundle accepts a
counteroffer for the same bundle at a price of p + κ > p.
For example, a television company that bid $10 million for
broadcasting rights might be willing to pay an extra $10000
to satisfy the competitive requirements of the auction and
win the rights instead of dropping out altogether. In light
of this bidder model we pose a weaker—but arguably more
sensible from the auctioneer’s perspective—individual ratio-
nality requirement: informally, an auction is (π, κ)-IR for a
bidder if (i) the set of bidder types that the auction over-
charges has probability mass ≤ 1−π and (ii) no bidder type
is ever overcharged by more than κ.

An alternate widely-studied relaxation of IR is Bayesian-
IR (B-IR), which demands that a bidder’s utility is non-
negative only in expectation over the other bidders’ val-
ues. The revenue-optimal auction subject to efficiency, IC,
and B-IR is the Bayesian weakest-competitor VCG auction
of Krishna and Perry (1998). We argue that our notion of
(π, κ)-IR has several advantages over B-IR as an auction-
design desideratum for at least the following reasons. First,
the decision of whether or not to participate is made sig-
nificantly easier for the bidders. A B-IR auction requires
a bidder to understand the value distributions of other bid-
ders, and that understanding should match the auctioneer’s
own understanding—a strong common knowledge assump-
tion. In contrast, a (π, κ)-IR auction only requires bidders
to reason about whether they are willing to accept an over-
charge by $κ and thus provides bidders a greater degree of
transparency. Second, a (π, κ)-IR auction is more favorable
to risk-averse bidders than a B-IR auction which can lead to
high overcharges (even if with low probability). B-IR auc-
tions can indeed result in arbitrarily high overcharges (this
is the case with the famous B-IR auction of Crémer and
McLean (1988); see Bikhchandani (2010)) while (π, κ)-IR
auctions have an explicit cap κ on overcharge. Third, B-IR
auctions can overcharge bidders with much higher frequency
than (π, κ)-IR auctions which have an explicit cap 1 − π
on overcharge frequency (Example 3.5). Fourth, (π, κ)-IR
is a flexible enough participation model to capture forms of
auctioneer knowledge other than a full value distribution. In
Section 3 we study a knowledge model involving quantiles.
Here, the appropriate participation constraint is a “robust”
(π, κ)-IR constraint. B-IR, on the other hand, is incompati-
ble with the quantile knowledge model.

Revenue-optimal efficient auctions When counteroffers
are restricted to be close enough to the bid price so that bid-
ders accept the overcharge, we derive the revenue-optimal
auction subject to efficiency, IC, and (π, κ)-IR. The revenue-
optimal auction belongs to our new family of f -VCG auc-
tions. We study two auctioneer knowledge models: full bid-
der value distributions and bidder value quantiles. We define
the appropriate notion of (π, κ)-IR and derive the revenue-
optimal efficient auction for both knowledge models.

Sample and computationally efficient learning The
third auctioneer knowledge model we study is sample access

to historical bidder data. We derive a general learning frame-
work to find revenue-maximizing f -VCG auctions when
bidder behavior is prescribed by their overcharge acceptance
probability. When overcharges are sufficiently small such
that efficiency can be ensured, our learning algorithms out-
put nearly globally revenue-optimal efficient auctions sub-
ject to (π, κ)-IR. We then show how to learn high-revenue,
probably-efficient f -VCG auctions subject to ex-post IR
when bidders never accept overcharges (the standard bid-
der assumption in auction design). In both of these impor-
tant settings we show how our learning algorithms can be
efficiently implemented with a winner determination oracle.

An important and unique feature of our learning frame-
work for competition is that the algorithms are instance
adaptive and parallelize across bidders. In all prior work, the
auction parameter optimization is done based on the training
data before the test instance is drawn. In our approach, the
auction parameters for a particular bidder are chosen based
on the test-time revealed bids of all other bidders, and pa-
rameter optimization across bidders can be done in parallel.

Related work The idea of a weakest competitor in VCG
auctions originates from Krishna and Perry (1998), but
even earlier works considered “worst-off” types first in
the context of bilateral trade by Myerson and Satterth-
waite (1983) and subsequently in more general trading
mechanisms by Cramton, Gibbons, and Klemperer (1987).
Weakest-competitor VCG had not been further studied af-
ter Krishna and Perry (1998) until Balcan, Prasad, and Sand-
holm (2023), who devised a prior-free version of weakest-
competitor VCG and explicitly quantified welfare and rev-
enue in terms of the quality of the auctioneer’s informa-
tion about the bidders. Their model of information was
distribution-free (similar models have also been studied in
different contexts by Hyafil and Boutilier (2004) and Chiesa,
Micali, and Zhu (2015)), and their auctions were not effi-
cient. Our goal in this paper is to use additional distribu-
tional knowledge—via a full prior, quantiles, or data—to
boost prices while striving to maintain efficiency.

In Section 3 bidder types can be arbitrarily correlated, and
the revenue-optimal choice of competitor for each bidder de-
pends heavily on the revealed types of all other bidders. The
interdependent values model (Milgrom and Weber 1982) is
thematically similar in that one bidder’s private value can be
influenced by the others. In our setting bidders themselves
have no inherent uncertainty about their private values—it
is the auctioneer who can refine his knowledge about a bid-
der after seeing the revealed types of everybody else. In fact,
efficiency might be impossible to achieve when a bidder’s
own understanding of her value is correlated to other bid-
ders (Dasgupta and Maskin 2000; Jehiel et al. 2006).

Increasing competition (and thus revenue) by recruiting
additional bidders has been studied starting with Bulow and
Klemperer (1996). Our approach gives the auction designer
the flexibility to express artificial competition. In high-stakes
applications like sourcing or spectrum recruiting additional
bidders might not be possible. Another class of auctions that,
indirectly, boost revenue while maintaining efficiency are
core-selecting auctions (Day and Raghavan 2007). However,



such auctions are not IC (Goeree and Lien 2016; Othman
and Sandholm 2010). Our auctions are IC and relax IR (Sec-
tion 3) and sometimes efficiency (Section 4). Finally, Sand-
holm (2013) used phantom bids in sourcing auctions to op-
timize the decision of what items to procure through other
means—a form of competition that is different from our ap-
proach since it directly affects the final allocation. Our com-
petitive auctions solely drive prices.

Finally, our learning algorithms in Section 4 are instance
adaptive and parallelize across bidders unlike prior ap-
proaches to data-driven auction design. We situate our work
within that literature in Section 4.

2 Problem Formulation, f -VCG Auctions,
and Our Bidder Model

There is a set N = {1, . . . , n} of bidders and a set M =
{1, . . . ,m} of indivisible items. In a combinatorial auction,
each bidder i ∈ N submits bids on distinct bundles of items.
Let Bi ⊆ 2M be the set of bundles bidder i bids on, so,
for each S ∈ Bi, bidder i submits her value vi(S) which is
the maximum amount she would be willing to pay to win
bundle S (vi(∅) = 0). Let vi = (vi(S))S∈Bi

∈ R|Bi|
≥0

denote bidder i’s submitted bids, let v = (v1, . . . , vn) de-
note the full valuation profile, and let v−i denote the valu-
ation profile excluding bidder i. We use the XOR bidding
language (Sandholm 2002; Nisan 2000), under which a bid
vector vi is implicitly extended to a full valuation vector
in R2m by vi(S) = max{0,maxT∈Bi:T⊆S vi(T )}, and the
seller never allocates to bidder i a bundle that i did not ex-
plicitly bid for (here we also assume free disposal, that is,
T ⊆ S =⇒ vi(T ) ≤ vi(S)). Let Γ ⊆ ×i∈N Bi de-
note the set of feasible allocations, that is, the set of parti-
tions S = (S1, . . . , Sn) of M with Si ∈ Bi for each i and
Si ∩ Sj = ∅ for each i, j.

Type spaces Before bids are submitted, bidder i’s valua-
tion vi (her type) is her own private information. What is
known to the auction designer is the type space of the bid-
ders, denoted by Θ ⊆×i∈N R2m , and that v ∈ Θ. Given
realized bids v−i of all bidders but i, let Θi(v−i) := {v̂i :
(v̂i,v−i) ∈ Θ} be the type space of bidder i. In other words,
after seeing the submitted bids v−i of all other bidders, the
auction designer knows vi ∈ Θi(v−i). Importantly, what the
auction designer knows about bidder i can be influenced by
the revealed bids of all other bidders. For example, consider
a seller of a painting who does not know if the painting is a
forgery or not. What the seller does know is that the bidders,
who are all art collectors, have similar values for the painting
(either high or low). Then, if bidders 2, . . . , n all bid high on
the painting, the seller knows that bidder 1 also has a high
value before seeing her actual bid. We use the terms type and
value/valuation interchangeably to refer to a bid vector vi.

Auction design desiderata and the VCG auction An ef-
ficient auction selects the efficient (welfare-maximizing) al-
location S∗ := argmaxS∈Γ

∑
j∈N vj(Sj). Let w(v) =

maxS∈Γ

∑
j∈N vj(Sj) and let w(v|N \ i) =

∑
j ̸=i vj(S

∗
j ).

An auction is (dominant-strategy) incentive compatible (IC)
if each bidder’s utility (her value for her winning bundle in

the auction minus her payment) is weakly maximized by
reporting her true type, no matter what the other bidders
report. An auction is (ex-post) individually rational (IR) if
each bidder’s utility for truthful bidding is non-negative, no
matter what the other bidders report. The classic efficient
auction due to Vickrey (1961), Clarke (1971), and Groves
(1973) (VCG) gives bidder i her winning bundle S∗

i in
the efficient allocation S∗, and charges her a payment of
pVCGi (v) := w(0,v−i)− w(v|N \ i). VCG is IC and IR.

f -VCG auctions We now define our new auction family:
f -VCG auctions. For a tuple of functions f = (f1, . . . , fn),
fi : ×j ̸=i R2m → R2m , the f -VCG auction (1) elic-
its bidders’ types v = (v1, . . . , vn), (2) selects the effi-
cient allocation S∗ achieving welfare w(v), and (3) offers
bidder i her winning bundle S∗

i for a price of pfi (v) =
w(fi(v−i),v−i) − w(v|N \ i). In step (3) if vi(S

∗
i ) ≥

pfi (v), bidder i is required to pay pfi (v) (this prevents equi-
libria other than truthful bidding where low bidders over-
bid). Otherwise if vi(S

∗
i ) < pfi (v), bidder i can choose

to accept the higher payment (violating her IR constraint)
or exit the auction altogether (leading to an inefficient
allocation with S∗

i unsold). All f -VCG auctions are IC
since they are Groves mechanisms (that is, the pivot term
w(fi(v−i),v−i) has no dependence on bidder i’s revealed
type), and have the natural interpretation of fi(v−i) out-
putting an artificial competitor for bidder i. The f -auctions
fi = 0, fi = argminṽi∈Θi

Ev−i
[w(ṽi,v−i)], and fi(v−i) =

argminṽi∈Θi(v−i) w(ṽi,v−i) are vanilla VCG, Bayesian
WCVCG (Krishna and Perry 1998), and WCVCG (Bal-
can, Prasad, and Sandholm 2023), respectively. Let pṽii =
w(ṽi,v−i) − w(v|N \ i) be the price when the competitor
ṽi is directly specified.

Overcharges, competition, bidder behavior An f -VCG
auction risks incurring an overcharge of ofi (v) := pfi (v) −
vi(S

∗
i ) > 0 for bidder i. Let a(p, κ) ∈ [0, 1] be the proba-

bility that a bidder who wins bundle S∗
i with bid price p =

vi(S
∗
i ) accepts a counteroffer for the same bundle at price

p+κ. We say bidder i is overcharged by κ if ofi (v) = κ > 0,
regardless of whether she accepts or not. We have ofi (v) =
w(f(v−i),v−i) − w(vi,v−i), so bidder i is overcharged if
and only if w(vi,v−i) < w(f(v−i),v−i), that is, she is
not competitive enough. Let payfi (v) = pfi (v)(1[o

f
i (v) ≤

0] + a(vi(S
∗
i ), o

f
i (v))1[o

f
i (v) > 0]) be bidder i’s ex-

pected payment in the f -VCG auction. Let oṽii (v) =

pṽii (v)−vi(S
∗
i ) = w(ṽi,v−i)−w(vi,v−i) and payṽii (v) =

pṽii (v)(1[oṽii (v) ≤ 0] + a(vi(S
∗
i ), o

ṽi
i (v))1[oṽii (v) >

0]) be the overcharge and expected payment, respectively,
when the competitor ṽi is directly specified. Finally, let
C(ṽi;v−i) = {vi ∈ Θi(v−i) : w(vi,v−i) ≥ w(ṽi,v−i)}
be the set of types competitive with ṽi given v−i.

3 Revenue-Optimal Efficient Auctions
We study two sources of additional bidder information avail-
able to the auction designer: knowledge of a full value dis-
tribution and knowledge of value quantiles consistent with



an unknown value distribution. In this section we assume
overcharges are small enough to always be accepted. This
allows us to guarantee efficiency of our auctions and derive
revenue-optimal efficient auctions subject to relaxed IR.
Definition 3.1. Fix v−i. We say κ is an acceptable over-
charge for bidder i if a(vi(Si), κ) = 1 for all vi ∈
Θi(v−i), Si ∈ Bi, Si ̸= ∅. Let vκi , which we call the κ-
competitor, denote a bidder type such that w(vκi ,v−i) =
κ+minṽi∈Θi(v−i) w(ṽi,v−i).

If an f -VCG auction only generates acceptable over-
charges, payfi (v) = pfi (v) and the auction is efficient.

To situate our results, we first restate the revenue optimal-
ity result of Balcan, Prasad, and Sandholm (2023) in terms
of f -VCG auctions. In all results, D is a Borel probability
distribution on Θ.
Theorem 3.2 (Balcan, Prasad, and Sandholm (2023)). Let Θ
be compact and convex. Let D be any distribution on Θ. The
f -VCG auction fi(v−i) = argminṽi∈Θi(v−i) w(ṽi,v−i)

maximizes Ev∼D[payi] for each i, and is thus revenue op-
timal, subject to efficiency, IC, and IR.

Knowledge Model 1: Bidder Value Distributions
We formally define our IR relaxation, (π, κ)-IR, in the dis-
tributional knowledge model where the auction designer
knows the bidder valuation distribution D over Θ.
Definition 3.3 ((π, κ)-IR, full value distribution). An auc-
tion is (π, κ)-IR with respect to D if for each bidder i
Prv∼D[oi(v) > 0] ≤ 1− π and oi(v) ≤ κ for all v ∈ Θ.

We now characterize the revenue-optimal auction subject
to efficiency, IC, and (π, κ)-IR. It can be written as an f -
VCG auction. Full proofs are in App. A.
Theorem 3.4. Let Θ be a compact and convex type space.
Let D be a distribution supported on Θ and let µ be the
corresponding probability measure. Let µv−i

be the condi-
tional measure over vi ∈ Θi(v−i). Let vπi ∈ Θi(v−i) be
such that µv−i

(C(vπi ;v−i)) = π and let κ be an acceptable
overcharge. The f -VCG auction defined by

fi(v−i) =

{
vπi if w(vπi ,v−i) ≤ w(vκi ,v−i)

vκi otherwise

maximizes Ev∼D[payi] for each i, and is thus revenue opti-
mal, subject to efficiency, IC, and (π, κ)-IR w.r.t. D.

Proof sketch. The competitor vκi provides a cap on the wel-
fare induced by the competitor chosen by fi since no type
in Θi(v−i) can be overcharged by more than κ. If the com-
petitive set of types C(vκi ;v−i) has measure at least π, vκi is
the “most competitive” competitor since a competitor with
higher welfare (thus increasing the f -VCG auction pay-
ment) would cause a set of types with measure > 1−π to be
overcharged. Otherwise if C(vκi ;v−i) has measure less than
π, we must pick a weaker competitor to reduce the probabil-
ity of overcharge. That weaker competitor is precisely the vπi
such that C(vπi ;v−i) has measure π (which we show always
exists). An application of revenue equivalence (Vohra 2011,
Theorem 4.3.1) proves global revenue optimality among all
efficient, IC, and (π, κ)-IR auctions.

We show via an example that B-IR auctions, specifically
the Bayesian weakest-competitor auction of Krishna and
Perry (1998), can overcharge with high frequency, giving
further credence to our approach of optimal efficient auction
design subject to an overcharge frequency cap.

Example 3.5. Consider an auction with two items A and B
and two bidders i ∈ {1, 2}. The type space is Θ = Θ1 ×Θ2

with Θi = {(vi(A), vi(B)) ∈ R2
≥0 : vi(A) + vi(B) = 1}

for both bidders (so, implicitly, vi(AB) = 0 for both bid-
ders). Suppose both bidders’ valuations are distributed uni-
formly and independently over the type space. The Bayesian
weakest competitors prescribed by Krishna and Perry (1998)
are chosen before true values are revealed. The Bayesian
weakest competitor for bidder 1 (and identically for bid-
der 2) is the valuation ṽ1 = (ṽ1(A), ṽ1(B)) that minimizes
Ev2 [w(ṽ1, v2)], which is ṽ1 = (1/2, 1/2) (the calculation
showing this is in App. A). Suppose now that the realized
type of bidder 2 is (v2(A), v2(B)) = (1, 0), so bidder 2 wins
item A and bidder 1 wins item B. According to the Bayesian
weakest competitor, bidder 1 is charged (1+1/2)−1 = 1/2,
so whenever v1(B) < 1/2, bidder 1 is overcharged. So,
there is a 50% probability that bidder 1 is overcharged.

Looking to Theorem 3.4, the auction designer chooses the
competitor vπi for bidder 1 after having seen bidder 2’s re-
vealed type of (1, 0). For an overcharge probability of 1−π,
that weakest competitor is vπi = (1 − π, π). The Bayesian
weakest competitor is v

1/2
i which induces an impractically

high overcharge rate of 50%.

Knowledge Model 2: Bidder Value Quantiles
We now study a knowledge model where the auctioneer
has less knowledge than a full bidder value distribution.
In the quantile knowledge model, we assume some under-
lying unknown value distribution, but the auction designer
knows quantiles corresponding to the distribution. Formally,
for each bidder i, the auctioneer possesses a sequence of
sets (that can depend on the revealed types of the other
bidders) {Θπ

i (v−i)}0<π≤1 with Θπ
i (v−i) ⊇ Θπ′

i (v−i) for
any π ≥ π′ and Θ1

i (v−i) = Θi(v−i). This sequence of
quantiles represents the knowledge that vi ∈ Θπ

i (v−i) with
probability π given the bid profile v−i of all other bidders.
A distribution D over Θ is consistent with the quantiles if
Prv̂∼D[v̂i ∈ Θπ

i (v−i)|v̂−i = v−i] = π. The notion of
(π, κ)-IR in the quantile knowledge model is a robust ver-
sion of the distributional version.

Definition 3.6 ((π, κ)-IR, quantiles). An auction is
(π, κ)-IR with respect to {Θπ

i } if for each bidder i
supD̂ consistent with {Θπ

i }
Prv∼D̂[oi(v) > 0] ≤ 1 − π and

oi(v) ≤ κ for all v ∈ Θ.

Theorem 3.7. Let Θ be a compact and convex type space.
Let {Θπ

i (v−i)} be a sequence of quantiles such that (i)
the set-valued function π 7→ Θπ

i (v−i) is continuous and
(ii) the map π 7→ minṽi∈Θπ

i (v−i) w(ṽi,v−i) is decreasing
in π. Let D be any distribution supported on Θ consistent
with {Θπ

i (v−i)}. Let vπi = argminṽi∈Θπ
i
w(ṽi,v−i) be the

weakest competitor in quantile Θπ
i (v−i) and let κ be an ac-



ceptable overcharge. The f -VCG auction defined by

fi(v−i) =

{
vπi if w(vπi ,v−i) ≤ w(vκi ,v−i)

vκi otherwise

maximizes Ev∼D[payi] for each i, and is thus revenue opti-
mal, subject to efficiency, IC, and (π, κ)-IR w.r.t. {Θπ}.

Proof sketch. We construct a worst-case distribution D̂ (let
µ̂ be the corresponding probability measure) that achieves
the supremum in the definition of (π, κ)-IR for any f -
VCG auction. Then, as in the proof of Theorem 3.4, if
µ̂(C(vκi ;v−i)) ≥ π, vκi is the optimal competitor since it
satisfies (π, κ)-IR and we cannot overcharge by more than
κ. Otherwise if µ̂(C(vκi ;v−i)) < π, that is, the overcharge
probability is > 1 − π, we must pick a weaker competi-
tor to reduce the probability of overcharge. That competitor
is the vπi such that µ̂(C(vπi ;v−i)) = π, which, based on
our construction, is precisely the weakest competitor vπi that
minimizes w(vπi ,v−i) over vπi ∈ Θπ

i (v−i). To prove global
optimality we apply revenue equivalence as in Theorem 3.4.

The construction of the worst-case measure µ̂ is simple:
it is supported on a set of weakest competitors of the form
{vπi : vπi = argminṽi∈Θπ

i (v−i) w(ṽi,v−i), π ∈ (0, 1]} and
is defined to be consistent with the quantiles as µ̂({vπi : π ∈
(π1, π2)}) = π2 − π1 for all 0 ≤ π1 < π2 ≤ 1.

Let us emphasize that (for both knowledge models) in a
(99%, κ)-IR auction, only 1% of bidder types ever have to
deal with issues of overcharge and participation. 99% of the
time the auction is perfectly efficient, IC, IR, and enjoys im-
proved revenues. The auctioneer sets π and κ to strike a bal-
ance between risk of overcharging weak bidders and enjoy-
ing increased revenue from the large majority of bidders.

We derived the globally revenue optimal efficient auc-
tion for acceptable overcharges. Acceptability ensured that
a (π, κ)-IR auction remained efficient. Otherwise it is un-
likely that a concise global revenue optimality guarantee ex-
ists since, without an efficiency constraint, that would solve
revenue-optimal multi-item auction design—a major open
question—as a special case. In Section 4 we use a data-
driven approach to design f -VCG auctions that are nearly
revenue-optimal for the class of f -VCG auctions (but not
globally revenue optimal) for general overcharges. Before
that, we discuss how our results generalize beyond auctions.

Beyond Auctions: General Mechanism Design
Our results so far are not specific to combinatorial auctions
and hold in a more general multidimensional mechanism
design setting as in Balcan, Prasad, and Sandholm (2023).
In that setting, Γ is a finite set of outcomes and an agent’s
type is a vector vi ∈ RΓ indexing her value for each out-
come. The chief issue that must be addressed when apply-
ing our methodology to other settings is non-participation
due to overcharge. What does non-participation mean, and
what are its consequences, in the mechanism design setting
of interest? In auctions, a non-participating agent receives no
items. In other settings, for example public projects where
the final outcome involves a resource shared by agents, non-
participation might not be as naturally implementable.

4 Learning to Generate Competition
In the previous section we studied two different knowledge
models for the auction designer: knowledge of the bidders’
value distributions and knowledge of quantiles consistent
with the bidders’ value distributions. In practice, access to
an exact prior is unrealistic, and fine-grained knowledge of
quantiles as in the continuity requirement in Theorem 3.7
might be impractical. In this section we study a third, realis-
tic, knowledge model: access to historical bidder data.

First we establish the formal setting. Our setup mirrors
how combinatorial auctions are run in practice. We then
prove our main learning guarantees for independently dis-
tributed bidder values (this is the standard assumption in
mechanism design; we discuss challenges to extending our
approach to correlated bidders) and provide learning al-
gorithms. We then study the computational complexity of
the learning algorithms. Throughout, we situate our results
within the broader context of data-driven auction design.

Bidder valuations In practice a full valuation vector can-
not be communicated due to its exponential length. Instead,
the auction designer alleviates this issue by placing one of
two restrictions on bidder valuations: (i) bidder i is restricted
to submit bids on a set Bi ⊆ 2M of predetermined bundles
or (ii) bidder i is allowed to submit bids on at most b bun-
dles of her choice. Let supp(vi) = {S ⊆ M : vi(S) > 0}
denote the supported bids of a valuation vector. We refer to
valuation functions supported on Bi as Bi-valuations and
valuation functions with support size ≤ b as b-valuations.
In this section, for simplicity, we assume that bidder i sub-
mits a Bi-valuation function where Bi is set by the auction
designer (we handle b-valuations in App. B). This is a prac-
tical requirement in combinatorial auctions to alleviate com-
munication costs and the computational cost of winner de-
termination (e.g., spectrum auctions in the UK and Canada
employed the XOR language with explicit bid limits of 4000
and 500, respectively (Ausubel and Baranov 2017)).

Data-driven auction design The auction designer in our
setting has access to K independently and identically dis-
tributed (IID) samples V = {v(1), . . . ,v(K)} drawn from
an unknown distribution D supported on Θ. We assume bid-
ders’ type spaces and type distributions are independent, that
is, Θ = Θ1 × · · · ×Θn and D = D1 × · · · ×Dn have prod-
uct structures. So, Θi = Θi(v−i) is independent of the re-
vealed types of the other agents and the conditional distribu-
tion over bidder i’s type given v−i is just Di. As discussed
above, Di is a distribution over Bi-valuations, that is, the
type space of bidder i is of the form Θi ⊆ {vi ∈ [0, H]2

m

:
supp(vi) = Bi} where H is an upper bound on any bid.

Overcharge acceptance probability We assume that the
probability of accepting an overcharge only depends on the
overcharge: a(κ) = a(p, κ). For example, if there are known
appraisal values on the items being auctioned, it might be
reasonable to assume some bid-independent probability of
overcharge acceptance. This (stylized) assumption is solely
for technical ease of exposition; without it our bounds would
only change slightly to depend on the structure of a(p, κ).



Learning Guarantees and Algorithms for
Independent Bidder Types
Even with independent bidder types, our learning algorithms
choose a competitor for bidder i that is highly dependent on
v−i. For a dataset V = {v(1), . . . ,v(K)} of type profiles,
define Vi = {v(1)i , . . . , v

(K)
i } to be the dataset of bidder-i

types. Since bidders are independently distributed, each Vi is
an IID dataset from Di. Let OPTf

i (π, κ) denote the optimal
payment Ev∼D[payi] of any (π, κ)-IR f -VCG auction and
let OPTi(π, κ) denote the globally optimal payment of any
efficient, IC, and (π, κ)-IR mechanism (achieved by the f -
VCG auction of Theorem 3.4 for acceptable κ).

We now present our main learning guarantees. Let
Fprice(Bi) = {pṽii : Θ → [0, H] : supp(ṽi) = Bi} and
Fpay(Bi) = {payṽi

i : Θ → [0, H] : supp(ṽi) = Bi} be
the collection of price and payment functions, respectively,
parameterized by Bi-competitor ṽi. We bound the intrin-
sic complexity as measured by pseudodimension of these
function families in order to prove our learning guarantees.
The pseudodimension of a class of functions F = {f :
Θ → [0, H]} (defined in App. B), denoted by Pdim(F), is a
standard learning-theoretic measure of complexity for real-
valued functions. Full proofs from this section and learning
theory background are in App. B.
Lemma 4.1. Pdim(Fprice(Bi)) and Pdim(Fpay(Bi)) are at
most O(|Bi| log |Bi|).

Proof sketch. Fix v. We exhibit a decomposition of com-
petitor space RBi (treating ṽi as a tunable parameter) by
O(B2

i ) hyperplanes into regions such that within each re-
gion (i) whether or not vi is competitive with (and thus not
overcharged by) ṽi is invariant and (ii) pi and payi are linear
as functions of ṽi. The result of Balcan et al. (2023) allows
us to turn this structure into a pseudodimension bound.

Let ε(K, δ) = O(H
√
(|Bi| log |Bi|+ ln(1/δ))/K). The

following corollary, which is a consequence of standard re-
sults from learning theory (see App. B), shows that ε con-
trols the error between empirical payment and expected pay-
ment uniformly over all possible competitors.
Corollary 4.2. Fix v. With probability ≥ 1−δ over the draw
of dataset V = {v(1), . . . ,v(K)}, the following quantities
are at most ε(K, δ/n) for all i and all Bi-valuations ṽi.

• | 1K
∑K

ℓ=1 p
ṽi
i (v

(ℓ)
i ,v−i)− Evi∼Di [p

ṽi
i (vi,v−i)]|

• | 1K
∑K

ℓ=1 pay
ṽi
i (v

(ℓ)
i ,v−i)− Evi∼Di

[payṽii (vi,v−i)]|

• | |{ℓ:o
ṽi
i (v

(ℓ)
i ,v−i)>0}|
K − Prvi∼Di

[oṽii (vi,v−i) > 0]|
The above uniform convergence bounds are, for each

bidder i, over a transformed training set of the form
(v1i ,v−i), . . . , (v

K
i ,v−i) for each bidder i. This is a form

of instance-adaptive learning since we use the test-time re-
vealed bids v−i to (i) define the training set for bidder i and
(ii) optimize the auction parameters, namely the competitor
ṽi, for bidder i (as we show in Theorems 4.3 and 4.4). This is
markedly different from prior approaches to data-driven auc-
tion design, for example by Balcan, Sandholm, and Vitercik
(2023) and references within, where in order for the learned

auction to be IC, the auction parameters are set before the
test instance is seen. Some prior work tackles the unlimited
supply setting by learning prices “within an instance” from
other bidders’ revealed bids (Baliga and Vohra 2003; Balcan
et al. 2005), but limited supply (our setting) is more chal-
lenging (Balcan, Prasad, and Sandholm 2021).

We now translate these generalization guarantees into
concrete learning algorithms. The most general result for
any overcharge acceptance function a(κ) is Theorem B.2 in
App. B. It outputs an empirical-payment-maximizing com-
petitor subject to empirical overcharge constraints. Here, we
present algorithms for two pertinent cases. The first case is
for acceptable κ—here the revenue-optimal efficient (π, κ)-
IR auction is given by Theorem 3.4. The second case is for
bidders who do not accept overcharges, that is, a(κ) = 0 for
all κ. Here we obtain high-revenue learned auctions that are
exactly ex-post IR and probably efficient.

Acceptable overcharges: nearly revenue-optimal effi-
cient auctions The learning algorithm defining fi(v−i)
outputs a competitor either from the dataset Vi or defaults to
a κ-competitor vκi based on empirical overcharge frequency.

Theorem 4.3. Let κ be acceptable and let the underlying
type space Θ be compact and convex. Given an IID dataset
V = {v(1), . . . ,v(K)} define the following f -VCG auction:

fi(v−i) = argmax
ṽi∈Vi∪{vκ

i }
w(ṽi,v−i)

s.t. |{ℓ:oṽii (v
(ℓ)
i ,v−i)>0}|
K ≤ 1− π + ε(K, δ/n)

w(ṽi,v−i) ≤ w(vκi ,v−i).

The resulting auction is efficient and, with probability ≥ 1−
δ over the draw of V , Ev∼D[payfi (v)] ≥ OPTi(π, κ) −
2ε(K, δ/n) for all i and is thus nearly revenue-optimal, and
is (π − 2ε(K, δ/n), κ)-IR.

High-revenue probably-efficient f -VCG auctions We
apply our techniques to the setting where bidders do not
accept overcharges (a(κ) = 0 for all κ > 0). In other
words, bidders’ IR constraints must be satisfied. In this case,
the only way to increase revenue is to sacrifice efficiency.
As discussed previously, this is the standard model of bid-
ders in auction design. We learn revenue-maximizing auc-
tions within the class of f -VCG auctions subject to a ef-
ficiency constraint: let OPTf

i (π) denote the optimal pay-
ment Ev∼D[payfi ] = Ev∼D[pfi · 1[ofi (v) ≤ 0]] of any f -
VCG auction such that Prv∼D[ofi (v) < 0] < 1 − π (so
π is the probability bidder i is sold her winning bundle in
the efficient allocation). We no longer need to consider a κ-
competitor since there are no IR violations.

Theorem 4.4. Assume bidders do not accept overcharges.
Given an IID dataset V = {v(1), . . . ,v(K)} define the fol-
lowing f -VCG auction: fi(v−i) outputs

argmax
ṽi∈Vi

1
K

∑K
ℓ=1 p

ṽi
i (v

(ℓ)
i ,v−i)1[o

ṽi
i (v

(ℓ)
i ,v−i) ≤ 0]

s.t. |{ℓ:oṽii (v
(ℓ)
i ,v−i)>0}|
K ≤ 1− π + ε(K, δ/n).



The resulting auction is IR and, with probability ≥ 1 − δ

over the draw of V , for all bidders i: Ev∼D[payfi (v)] ≥
OPTf

i (π)− 2ε(K, δ/n) and i is sold her winning bundle in
the efficient allocation with probability ≥ π − 2ε(K, δ).

Setting π = 0 corresponds to “pure” revenue maximiza-
tion subject to IC and IR within the class of f -VCG auc-
tions with no other constraints. On the other hand, π = 0.99
corresponds to the revenue-maximizing f -VCG auction that
retains each bidder with probability at least 99%.

Challenges posed by correlation in bidder types The
assumption of independent bidder types is critical to the
above empirical payment maximization algorithms; each
Vi is independent and consists of IID draws of bidder
i’s type and therefore we can optimize over the dataset
(v

(1)
i ,v−i), . . . , (v

(K)
i ,v−i) for each bidder without intro-

ducing any correlation. Without independence, the dataset
can be completely uninformative about bidder i’s test-time
type. To illustrate, consider the extreme scenario where the
type space for bidder i implied by the test-time revealed
types of all other bidders v−i is completely disjoint from
the samples, that is, Θi(v−i) ∩ Vi = ∅. Then, Vi gives the
auction designer absolutely no information about the con-
ditional distribution over vi given v−i. Tackling this chal-
lenge, possibly via out-of-distribution learning (Ben-David
et al. 2010), is a compelling direction for future work since
most real-world settings involve correlation.

Computational Considerations
A feature of the f -VCG auctions above is that the competi-
tor fi(v−i) is determined via a search over the set Vi of his-
torical bids for i and the κ-competitor. Furthermore they are
sample efficient: the number of samples required to meet a
prescribed error bound ε is O(H

2

ε2 (|Bi| log |Bi|+ln(n/δ))).
This is in stark contrast with other combinatorial auction for-
mats (e.g., affine maximizer auctions (Roberts 1979)) for
which empirical revenue maximization requires exponen-
tially many samples and is computationally intractable (Bal-
can, Sandholm, and Vitercik 2023) (an approach via hyper-
plane arrangements has been explored in some restricted set-
tings (Balcan, Prasad, and Sandholm 2021, 2022)).

We determine the computational complexity of our learn-
ing algorithms given a winner-determination oracle that on
input v outputs w(v) and the efficient allocation S∗. Winner
determination is NP-complete but can be efficiently imple-
mented in practice via custom search algorithms (Sandholm
et al. 2005; Sandholm 2006) or by integer programming.
First, assuming type spaces described by linear constraints,
we show how to compute a κ-competitor.

Theorem 4.5. Given as input v−i and a polynomial number
of linear constraints defining Θi(v−i), a κ-competitor vκi
with w(vκi ,v−i) = κ + minṽi∈Θi(v−i) w(ṽi,v−i) can be
computed with a polynomial number of calls to a winner-
determination oracle and additional polynomial run time.

Proof sketch. Balcan, Prasad, and Sandholm (2023) give a
linear program (LP) to compute weakest competitors (zero-
competitors in our terminology). Their LP enumerates all

feasible allocations Γ in its constraint set. We show that a
separation oracle for that LP can be implemented with a sin-
gle call to a winner determination oracle. So the weakest
competitor ṽi that minimizes w(ṽi,v−i) can be computed
via the ellipsoid algorithm (Grotschel, Lovász, and Schrijver
1993). Extending to a κ-competitor is straightforward.

To find the empirical-payment-maximizing competitor
fi(v−i) one needs to call the winner determination oracle
to compute w(v

(ℓ)
i ,v−i) for each v

(ℓ)
i ∈ Vi.

Theorem 4.6. The competitor fi(v−i) in Theorems 4.3
and 4.4 can be computed with polynomial calls to a winner
determination oracle and additional polynomial run time.

Finally, observe that the f -VCG auction computation can
be parallelized across (independent) bidders. The empirical-
payment-maximization algorithm to compute fi(v−i) for
different bidders uses completely disjoint portions of the
dataset, and is an independent computation for each bid-
der. This has not been the case even in modern approaches
to data-driven auction design via, for example, deep learn-
ing (Dütting et al. 2019; Curry, Sandholm, and Dickerson
2023; Duan et al. 2023).

5 Conclusions and Future Research
We showed how to inject artificial competition into com-
binatorial auctions to accomplish greater revenue when ef-
ficiency is a constraint of the auction design. While the
weakest-competitor VCG mechanism of Balcan, Prasad, and
Sandholm (2023) (Krishna and Perry (1998)) poses a rev-
enue barrier for efficient, IC, and IR (B-IR) auctions, we
showed that under a relaxed participation model for bid-
ders we can nonetheless make fruitful progress. We derived
the revenue optimal auction subject to efficiency, IC, and
a relaxed notion of IR that involved auctioneer-set caps on
overcharge frequency and magnitude, for different auction-
eer knowledge models. Our new auction class, f -VCG auc-
tions, provided a unified language of artificial competition
and contained the revenue optimal auctions in all the above
settings. Finally, we gave sample and computationally effi-
cient instance-adaptive learning algorithms that parallelize
across bidders in a data-driven auction design setting.

There are a number of important theoretical and prac-
tical extensions needed to develop a more complete land-
scape of competitive efficient auctions. First, extensions of
and more realistic versions of our bidder participation model
are needed. While our (stylized) model takes a first step to-
wards understanding how a bidder would respond to com-
petitive prices, a more nuanced model that ties together
bidder uncertainty, rationality, and attitudes towards risk is
needed. Another important direction is to understand how
our methodology helps move prices closer to the core, an im-
portant group-fairness criterion in real-world combinatorial
auctions. Finally, the broader idea of auction parameter opti-
mization that separates across bidders and uses the revealed
types of other bidders merits deeper investigation. Current
combinatorial auctions do not have this property and a more
thorough understanding of when it can be exploited might
lead to new and better designs.
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A Omitted Proofs From Section 3
Proof of Theorem 3.4. For π ∈ (0, 1] let

Lπ(v−i) = argmax
L⊆Θi(v−i)

{
w(ṽi,v−i) :

µv−i(L) = π,
ṽi = argminv̂i∈L w(v̂i,v−i)

}
,

that is, Lπ(v−i) ⊆ Θi(v−i) is the set of probability mass π with the strongest weakest competitor. For a candidate weakest
competitor v̂i, consider the set C(v̂i;v−i) = {vi ∈ Θi(v−i) : w(vi,v−i) ≥ w(v̂i,v−i)}. C(v̂i,v−i) is precisely the set of
types vi in Θi(v−i) that are competitive with v̂i, that is, types vi that are not overcharged by pv̂i

i (·,v−i). There are three steps to
the proof. First, we show there exists a type ṽi such that C(ṽi;v−i) has measure π. Next, we show that Lπ(v−i) = C(ṽi;v−i),
which explicitly characterizes Lπ(v−i) in terms of competitive types (this is an alternate characterization to the one in the
theorem statement in the main body of the paper that was solely based on competitive sets). Finally, an application of revenue
equivalence in the style of Krishna and Perry (1998); Balcan, Prasad, and Sandholm (2023) allows us to establish payment
optimality.

Let vi = argminv̂i∈Θi(v−i) w(v̂i,v−i) and vi = argmaxv̂i∈Θi(v−i) w(v̂i,v−i) be the weakest and strongest competitors in
Θi(v−i), respectively (both exist due to compactness of Θi(v−i)). We have C(vi;v−i) = Θi(v−i) so µv−i

(C(vi;v−i)) = 1.
We now argue that µv−i

(C(vi;v−i)) = 0. For Si ∈ Bi let S−i be the allocation restricted to N \ i that maximizes welfare
subject to the constraint that bidder i wins Si. We have

C(vi;v−i) = {vi : w(vi,v−i) = w(vi,v−i)}

=
⋃

S∗
i ∈Bi

{
vi :

vi(S
∗
i ) +

∑
j ̸=i vj(S

∗
j ) ≥ vi(S

′
i) +

∑
j ̸=i vj(S

′
j) ∀ S′

i ∈ Bi \ S∗
i ,

vi(S
∗
i ) +

∑
j ̸=i vj(S

∗
j ) = w(vi,v−i)

}
where each set in the (finite) union is of measure zero since the second constraint demands the zero probability event that
vi(S

∗
i ) take on the particular fixed value of w(vi,v−i) −

∑
j ̸=i vj(S

∗
j ). So C(vi;v−i) is itself of measure zero. As Θi(v−i)

is convex (and thus connected), continuity of µv−i
(C(·;v−i)) and the intermediate value theorem imply the existence of ṽi

with µv−i
(C(ṽi;v−i)) = π. Fix this ṽi. We claim that Lπ(v−i) = C(ṽi;v−i). For the sake of contradiction, suppose that

Lπ(v−i) = L ̸= C(ṽi;v−i), and let v′i be the weakest competitor of L. So µv−i
(L) = π and w(v′i,v−i) > w(ṽi,v−i).

Since the weakest competitor v′i of L generates strictly more welfare than ṽi, the set of types competitive with v′i is a strict
subset of the set of types competitive with ṽi, that is, C(v′i;v−i) ⊂ C(ṽ−i;v−i), which means µv−i

(C(v′i;v−i)) < π. But as
L ⊆ C(v′i;v−i), this is a contradiction.

We now use the revenue equivalence theorem and the above characterization to prove payment optimality. The key intuition
is that fi(v−i) outputs a competitor that makes either the κ-constraint or the π-constraint of (π, κ)-IR tight. Therefore, greater
payment cannot be obtained without violating relaxed-IR. Formally, suppose p′i(v) is an alternate payment rule that implements
the efficient allocation, is IC, and Ev∼D[p′i(v)] > Ev∼D[pfi (v)]. By revenue equivalence (Vohra 2011, Theorem 4.3.1), there
exists a function hi(v−i) such that p′i(v) = pfi (v) + hi(v−i). So

E
v∼D

[pfi (v) + hi(v−i)] > E
v∼D

[pfi (v)],

which means there exists a particular v−i such that hi(v−i) > 0. Fix this v−i, and let ṽi = fi(v−i) (so ṽi ∈ {vκi , vπi }).
If ṽi = vκi , the weakest competitor vi of Θi(v−i) is overcharged by exactly κ by pfi (vi,v−i). That weakest competitor is
therefore overcharged by more than κ by p′i, violating the κ-constraint in (π, κ)-IR. Else if ṽi = vπi , vπi ’s utility is zero (that is,
her IR constraint is tight) under pfi (v

π
i ,v−i). Therefore, vπi is overcharged by p′i(v

π
i ,v−i), and more importantly by continuity

of pfi (·,v−i) there is a sufficiently-small open ball centered at vπi such that all types in that ball are overcharged by p′i. Since
the measure of types less competitive than vπi is exactly 1 − π, a set of types of measure > 1 − π is overcharged by p′i. So p′i
violates the π-constraint of (π, κ)-IR in this case.

Bayesian weakest-competitor in Example 3.5. Let E denote the event that the weakest competitor ṽ1 wins item A, so E =
{ṽ1(A) ≥ v2(A)} and Pr(E) = ṽ1(A). By definition of the type space, the weakest competitor wins B if and only if event E
does not occur. For a given ṽ1,

E
v2
[w(ṽ1, v2)] = E

v2
[ṽ1(A) · 1[E] + ṽ1(B) · (1− 1[E]) + v2(A) · (1− 1[E]) + v2(B) · 1[E]]

= ṽ1(A)2 + (1− ṽ1(A))2 + (1− ṽ1(A)) · ṽ1(A) + 1

2
+

ṽ1(A)2

2

which is minimized at ṽ1(A) = 1/2, as claimed.



Proof of Theorem 3.7. Suppose there exists a prior distribution D consistent with the quantiles and an alternate payment rule
p′i that generates strictly more payment than the f -VCG auction defined in the theorem statement, that is, Ev∼D[p′i(v)] >

Ev∼D[pfi (v)], and p′i implements the efficient allocation and is IC. We will show that there exists a distribution D̂ consistent
with the quantiles such that under p′i, Prv∼D̂[o′i(v)] > 1 − π. First, by revenue equivalence (Vohra 2011, Theorem 4.3.1),
there exists a function hi(v−i) such that p′i(v) = pfi (v) + hi(v−i). So we have Ev∼D[pfi (v) + hi(v−i)] > Ev∼D[pfi (v)],
which means there must exist a particular v−i such that hi(v−i) > 0. Fix this v−i. We next construct the promised worst-case
measure µ̂.

The construction of the worst-case measure µ̂ is simple: it is supported on a set of weakest competitors of the form1{
vπi : vπi = argmin

ṽi∈Θπ
i (v−i)

w(ṽi,v−i), π ∈ (0, 1]

}
and is defined to be consistent with the quantiles as µ̂({vπi : π ∈ [π1, π2]}) = π2 − π1 for all 0 < π1 < π2 ≤ 1. The key
property of this distribution is that if π1 < π2, w(vπ1

i ,v−i) > w(vπ2
i ,v−i), that is, the weakest competitor in quantile π2 cannot

compete with the weakest competitor in quantile π1, so the µ̂-measure of types that cannot compete with vπi is precisely 1− π
(this shows that µ̂ achieves the supremum in the definition of (π, κ)-IR for any distribution D consistent with the quantiles).
Another key fact is that the map ω : (0, 1] → R≥0 defined by ω(π) = w(vπi ,v−i) is continuous (this is a consequence of
Berge’s Maximum Theorem and the fact that the set-valued function π 7→ Θπ

i is continuous).
Now, as in the proof of Theorem 3.4, if µ̂(C(vκi ;v−i)) ≥ π, vκi is the optimal competitor since it satisfies (π, κ)-IR and we

cannot overcharge by more than κ. Otherwise if µ̂(C(vκi ;v−i)) < π, that is, the overcharge probability is > 1 − π, we must
pick a weaker competitor to reduce the probability of overcharge. That competitor is the vπi such that µ̂(C(vπi ;v−i)) = π,
which is precisely the weakest competitor vπi that minimizes w(vπi ,v−i) over vπi ∈ Θπ

i (v−i).
Finally, consider the alternate payment rule p′i, and let ṽi = fi(v−i) (so ṽi ∈ {vπi , vκi }). If ṽi = vκi , the weakest competitor

vi = v1i of Θi(v−i) is overcharged by exactly κ by pfi (vi,v−i). That weakest competitor is therefore overcharged by more than
κ by p′i, violating the κ-constraint in (π, κ)-IR. Else if ṽi = vπi , vπi ’s IR constraint is tight when using payment rule pfi . So p′i
overcharges vπi , and more importantly, by continuity of ω, there exists ε sufficiently small such that for all π′ ∈ (π − ε, π + ε),
vπ

′

i is overcharged by p′i. So the µ̂-probability mass of types being overcharged is more than 1−π, so p′i violates the π-constraint
of (π, κ)-IR.

B Learning Theory Background and Omitted Proofs From Section 4
Definition B.1 (Pseudodimension). The pseudodimension of a class of real valued functions F = {f : Θ → R}, denoted by
Pdim(F), is the largest positive integer d such that there exist d inputs v1, . . . ,vd ∈ Θ and d thresholds r1, . . . , rd ∈ R such
that

|{(sign(f(v1)− r1), . . . , sign(f(vd)− rd)) : f ∈ F}| = 2d.

Uniform convergence The pseudodimension of a class of real valued functions F = {f : Θ → [0, H]} with bounded range
controls the rate of convergence of the difference between the empirical value over an IID dataset from Θ and the expected
value over the underlying distribution, uniformly over all functions in F , for any distribution. Formally, (see, e.g., Anthony and
Bartlett (1999)) for any K ∈ N, δ ∈ (0, 1), and any D supported on Θ,

Pr
v1,...,vK∼D

(
sup
f∈F

∣∣∣∣∣ 1K
K∑
ℓ=1

f(vℓ)− E
v∼D

[f(v)]

∣∣∣∣∣ ≤ εF (K, δ)

)
≥ 1− δ

where

εF (K, δ) = O

H

√
Pdim(F) + ln 1

δ

K

 .

Proof of Lemma 4.1. We prove the bounds for Fprice(Bi) and Fpay(Bi) first. Fix v. For each Si ∈ Bi, let S−i =
(S1, . . . , Si−1, Si+1, . . . , Sn) denote the allocation that maximizes welfare subject to the constraint that bidder i wins Si.
Over all Si ∈ Bi, consider the set of halfspaces in ṽi ∈ RBi :

ṽi(Si) +
∑
j ̸=i

vj(Sj) ≥ ṽi(S
′
i) +

∑
j ̸=i

vj(S
′
j) ∀ S′

i ∈ Bi \ Si

1How ties are broken in the argmin is irrelevant. What is important is continuity of the induced welfare function which is a consequence
of Berge’s theorem of the maximum.



where S′
−i denotes the welfare maximizing allocation subject to the constraint that i wins S′

i. This set of ≤ |Bi|2 hyperplanes
corresponding to those halfspaces partitions RBi into regions such that within each region, the overall efficient allocation S is
fixed. Thus, within each region,

pṽii (v) = ṽi(Si) +
∑
j ̸=i

vj(Sj)−
∑
j ̸=i

vj(S
∗
j )

is linear in ṽi. An application of the main result of Balcan, Sandholm, and Vitercik (2023) proves the pseudodimension bound
for Fprice(Bi). To understand the structure of payṽii , consider the same set of halfspaces as above along with the following set
of Bi additional halfspaces:

ṽi(Si) +
∑
j ̸=i

vj(Sj) ≥
n∑

j=1

vj(S
∗
j ) ∀ Si ∈ Bi.

In each region in the previous decomposition where some fixed allocation S was efficient over all ṽi in that region, the new
halfspace creates two additional regions: in one ṽi is less competitive than vi and so oṽii (v) = 0 =⇒ payṽii (v) = pṽii (v) and
in the other ṽi is more competitive than vi so payṽii (v) = pṽii (v) · a(κ). In both cases pay is linear within each region. So in
total, O(|Bi|2) hyperplanes partition RBi into regions such that within each region, payṽii (v) is linear as a function of ṽi. The
pseudodimension bound follows from Balcan, Sandholm, and Vitercik (2023).

We now present the general form of our learning algorithm for any overcharge cap κ. We will then show how the algorithm
can be implemented more simply and computationally efficiently for acceptable κ.

Theorem B.2. Given an IID dataset V = {v(1), . . . ,v(K)}, define the following f -VCG auction:

fi(v−i) = argmax
ṽi∈Θi

1

K

K∑
ℓ=1

payṽi
i (v

(ℓ)
i ,v−i)

s.t.
|{ℓ : oṽii (v

(ℓ)
i ,v−i) > 0}|
K

≤ 1− π + ε(K, δ)

w(ṽi,v−i) ≤ w(vκi ,v−i)

where vκi is a κ-competitor. Then, with probability ≥ 1− δ over the draw of V , Ev∼D[pfi (v)] ≥ OPTf
i (π, κ)− 2ε(K, δ) and

the resulting auction is (π − 2ε(K, δ), κ)-IR.

Proof of Theorem B.2. For a competitor ṽi, let

ô(ṽi) =
|{ℓ : oṽii (v

(ℓ)
i ,v−i) > 0}|
K

and o(ṽi) = Pr
vi∼Di

[oṽii (v,iv−i) > 0]

be its empirical overcharge frequency and true overcharge frequency, respectively. Let

p̂ay(ṽi) =
1

K

K∑
ℓ=1

payṽii (v
(ℓ)
i ,v−i) and pay(ṽi) = E

vi∼Di

[payṽii (vi,v−i)]

be the empirical payment ṽi generates and the true expected payment it generates, respectively. Let v∗i be the optimal Bi-
valuation output by the optimal (π, κ)-IR f -VCG auction.

First, by Corollary 4.2 (all inequalities hold with high probability), we have

ô(v∗i ) ≤ o(v∗i ) + ε(K, δ) ≤ 1− π + ε(K, δ).

Now, in the definition of our f -VCG auction, ṽi is chosen to maximize empirical payment subject to the constraint that empirical
overcharge frequency is at most 1− π + ε(K, δ). Therefore,

pay(ṽi) ≥ p̂ay(ṽi)− ε(K, δ)

≥ p̂ay(v∗i )− ε(K, δ)

≥ pay(v∗i )− 2ε(K, δ).

Finally, the actual overcharge frequency of our auction is

o(ṽi) ≤ ô(ṽi) + ε(K, δ) ≤ 1− π + 2ε(K, δ).

So our f -VCG auction yields expected payment at worst 2ε(K, δ) less than the optimal payment, and its overcharge frequency
is at worst 2ε(K, δ) greater than 1− π. All of the competitors considered above never overcharge by over κ.



Proofs of Theorems 4.3 and 4.4. The proofs of Theorems 4.3 and 4.4 boil down to showing that the argmax in Theorem B.2
can be computed by searching over the dataset Vi (and the κ-competitor if needed for Theorem 4.3). We outline the argument
in the context of Theorem 4.4 first. Here,

payṽii (v
(ℓ)
i ,v−i) = pṽii (v

(ℓ)
i ,v−i) · 1[oṽii (v

(ℓ)
i ,v−i) ≤ 0] =

(
w(ṽi,v−i)− (w(v

(ℓ)
i ,v−i)− v

(ℓ)
i (Sℓ

i ))
)
· 1[oṽii (v

(ℓ)
i ,v−i) ≤ 0]

where Sℓ
i is v(ℓ)i ’s winning bundle in w(v

(ℓ)
i ,v−i). Let us relabel the dataset Vi in order of increasing welfare:

w(v
(1)
i ,v−i) ≤ · · · ≤ w(v

(K)
i ,v−i).

Suppose
w(v

(k)
i ,v−i) < w(ṽi,v−i) < w(v

(k+1)
i ,v−i).

We claim that
pay

v
(k+1)
i

i (v
(ℓ)
i ,v−i) ≥ payṽii (v

(ℓ)
i ,v−i).

Indeed, if ṽi induces an overcharge, so must v(k+1)
i , so both payments are zero. If ṽi does not induce an overcharge, that is

w(ṽi,v−i) ≤ w(v
(ℓ)
i ,v−i), v

(k+1)
i also does not induce an overcharge. Therefore, replacing ṽi with v

(k+1)
i increases payment,

and the overcharge frequency constraint is not affected. So, the argmax in Theorem B.2 is attained by ṽi ∈ Vi, as desired.
The empirical payment maximization defining fi in Theorem 4.3 has an even simpler form due to the assumption that κ is

acceptable. The argmax has an even simpler form since for acceptable κ,

payṽii (v
(ℓ)
i ,v−i) = w(ṽi,v−i)− (w(v

(ℓ)
i ,v−i)− v

(ℓ)
i (Sℓ

i ))

(as ṽi is restricted to have welfare no greater than w(vκi ,v−i)). Therefore, as above (including vκi in the welfare-sorted dataset),
v
(k+1)
i generates strictly higher empirical payment with the same overcharge frequency as ṽi. Therefore it suffices to restrict to
ṽi ∈ Vi ∪ {vκi }.

Proof of Theorem 4.5. The linear program for computing a weakest competitor in Θi(v−i) based on the formulation in Balcan,
Prasad, and Sandholm (2023) is:

min
γ,ṽi

γ :
ṽi(Si) +

∑
j ̸=i

vj(Sj) ≤ γ ∀S ∈ Γ,

ṽi ∈ Θi(v−i)

 .

It has |Bi|+ 1 variables and enumerates the set of feasible allocations Γ in the constraints. Given a candidate solution (γ′, v′i),
to find the most violated constraint we solve

w(v′i,v−i) = max
S∈Γ

v′i(Si) +
∑
j ̸=i

vj(Sj)

via a call to our winner determination oracle. Let S′ be the welfare maximizing allocation on valuation profile v′i,v−i. If
γ′ − w(v′i,v−i) < 0 the constraint corresponding to S′ in the original LP is violated. Else there are no violated constraints
and γ′, v′i is optimal. The described routine, along with an additional scan over the constraints defining Θi(v−i) serve as a
separation oracle to be used within the ellipsoid algorithm. The ellipsoid algorithm makes a polynomial number of calls to the
separation oracle and requires additional polynomial run time (Grotschel, Lovász, and Schrijver 1993).

Having found a weakest competitor ṽi, the following type vκi defines a valid κ-competitor: vκi (S̃i) = κ + ṽi(S̃i) where
S̃i ∈ Bi is the weakest competitor’s winning bundle in w(ṽi,v−i) and vκi (S

′
i) = ṽi(S

′
i) for all other bundles S′

i ∈ Bi.

Bidders with b-valuations
A b-valuation vi is one with |supp(vi)| ≤ b. As discussed in Section 4, many real world combinatorial auctions (e.g., spectrum
auctions) are run with an auctioneer-set limit on the number of bids any bidder can submit. We show in this section that similar
learning guarantees can be derived for the class of f -VCG auctions such that each fi outputs a b-valuation.

Let
Fprice(b) = {pṽii : Θ → [0, H] : |supp(ṽi)| ≤ b}

and
Fpay(b) = {payṽii : Θ → [0, H] : |supp(ṽi)| ≤ b}

be the collection of price and payment functions, respectively, parameterized by b-competitor ṽi.

Lemma B.3. Pdim(Fprice(b)) and Pdim(Fpay(b)) are at most O(bm log b).



Proof. To prove the bounds for Fprice(b) and Fpay(b) we use the facts that

Fprice(b) =
⋃

Bi:|Bi|≤b

Fprice(Bi) and Fpay(b) =
⋃

Bi:|Bi|≤b

Fpay(Bi).

So, Fprice(b) (resp. Fpay(b)) is the union of
(
2m

b

)
< 2mb function classes each with pseudodimension O(b log b) (what we

proved in Lemma 4.1). Standard results2 imply that Pdim(Fprice(b)) and Pdim(Fpay(b)) are upper bounded by

O

(
max

(
b log b, log

(
2m

b

)
+ b log b log

(
log

(
2m

b

)
/(b log b)

)))
= O(max(b log b, bm+ b log b logm)) ≤ O(bm log b).

Analogues of Theorems B.2 and 4.3 can then be derived for b-valuations. The main caveat here is that since the set of b-
valuations is non-convex, any nontrivial type space of b-valuations will be non-convex. Hence the global revenue optimality
theorem (Theorem 3.4) for acceptable κ does not hold since revenue equivalence need not hold for non-convex type spaces.
In the analogue of 4.3 we will therefore only be able to compare to the revenue-optimal efficient f -VCG auction such that fi
outputs a b-valuation, rather than the globally optimal efficient auction.

2See https://home.ttic.edu/∼nati/Teaching/TTIC31120/2015/hw1.pdf for the needed result on VC dimension for unions of concept classes.
That result carries over to pseudodimension due to the fact that pseudodimension of F is equivalent to the VC dimension of the collection of
epigraphs of functions in F .


